
SHELVE IN:
PROGRAM

M
ING LANGUAGES/

JAVASCRIPT

$34.95 ($40.95 CDN)

J A V A S C R I P T
Y O U R

L E V E L U P

J A V A S C R I P T
Y O U R

L E V E L U P

ECMAScript 6 represents the biggest update to the
core of JavaScript in the history of the language.
In Understanding ECMAScript 6, expert developer
Nicholas C. Zakas provides a complete guide to the
object types, syntax, and other exciting changes
that ECMAScript 6 brings to JavaScript. Every chap-
ter is packed with example code that works in any
JavaScript environment so you’ll be able to see new
features in action. You’ll learn:

• How ECMAScript 6 class syntax relates to more
familiar JavaScript concepts

• What makes iterators and generators useful

• How arrow functions differ from regular functions

• Ways to store data with sets, maps, and more

• The power of inheritance

• How to improve asynchronous programming with
promises

• How modules change the way you organize code

Whether you’re a web developer or a Node.js
developer, you’ll find Understanding ECMAScript 6
indispensable on your journey from ECMAScript 5
to ECMAScript 6.

A B O U T T H E A U T H O R

Nicholas C. Zakas has been working on web appli-
cations since 2000, focusing on frontend develop-
ment, and is known for writing and speaking about
frontend best practices. He honed his experience
during his five years at Yahoo!, where he was principal
frontend engineer for the Yahoo! home page. He is
the author of several books, including The Principles
of Object-Oriented JavaScript (No Starch Press) and
Professional JavaScript for Web Developers (Wrox).

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™

“ I L I E F LAT .”

Th is book uses a durab le b ind ing that won’t snap shut.

FSC FPO

U
N

D
E

R
S

T
A

N
D

IN
G

 E
C

M
A

S
C

R
IP

T
 6

U
N

D
E

R
S

T
A

N
D

IN
G

 E
C

M
A

S
C

R
IP

T
 6

Z
A

K
A

S

Understanding eCMasCript 6

U n d e r s t a n d i n g
e C M a s C r i p t 6

t h e d e f i n i t i v e g u i d e f o r
J a v a s c r i p t d e v e l o p e r s

by Nicholas C. Zakas

San Francisco

Understanding eCMasCript 6. Copyright © 2016 by Nicholas C. Zakas.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Printed in USA

First printing

20 19 18 17 16 1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-757-1
ISBN-13: 978-1-59327-757-4

Publisher: William Pollock
Production Editor: Alison Law
Cover Illustration: Garry Booth
Interior Design: Octopod Studios
Developmental Editor: Jennifer Griffith-Delgado
Technical Reviewer: Juriy Zaytsev
Copyeditor: Anne Marie Walker
Proofreader: James Fraleigh
Indexer: BIM Creatives, LLC

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data
A catalog record of this book is available from the Library of Congress.

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

about the author
Nicholas C. Zakas has been working on web applications since 2000,
focusing on frontend development, and is known for writing and speak-
ing about frontend best practices. He honed his experience during
his five years at Yahoo!, where he was principal frontend engineer for
the Yahoo! home page. He is the author of several books, including
The Principles of Object-Oriented JavaScript (No Starch Press, 2014) and
Professional JavaScript for Web Developers (Wrox, 2012).

about the technical reviewer
Juriy Zaytsev (known online as kangax) is a frontend web developer
based in New York. He’s been exploring and writing about the quirky
nature of JavaScript since 2007. Juriy has contributed to several open
source projects, including Prototype.js and other popular projects like
his own Fabric.js. He co-founded an on-demand custom print service
called printio.ru and currently works at Facebook.

B r i e f C o n t e n t s

Foreword by Dan Abramov . .xvii

Acknowledgments . xix

Introduction . xxi

Chapter 1: Block Bindings . 1

Chapter 2: Strings and Regular Expressions . 13

Chapter 3: Functions . 35

Chapter 4: Expanded Object Functionality . 67

Chapter 5: Destructuring for Easier Data Access . 83

Chapter 6: Symbols and Symbol Properties . 99

Chapter 7: Sets and Maps . 119

Chapter 8: Iterators and Generators . 137

Chapter 9: Introducing JavaScript Classes . 165

Chapter 10: Improved Array Capabilities . 191

Chapter 11: Promises and Asynchronous Programming . 213

Chapter 12: Proxies and the Reflection API . 243

Chapter 13: Encapsulating Code with Modules . 283

Appendix A: Minor Changes in ECMAScript 6 . 299

Appendix B: Understanding ECMAScript 7 (2016) . 305

Index . 311

C o n t e n t s i n D e t a i l

Foreword by dan Abramov xvii

Acknowledgments xix

IntroductIon xxi
The Road to ECMAScript 6 . xxi
About This Book . xxii

Browser and Node .js Compatibility . .xxiii
Who This Book Is For . .xxiii
Overview . .xxiii
Conventions Used .xxiv
Help and Support . xxv

1
Block BIndIngs 1
var Declarations and Hoisting . 2
Block-Level Declarations . 3

let Declarations . 3
No Redeclaration . 4
const Declarations . 4
The Temporal Dead Zone . 6

Block Bindings in Loops . 7
Functions in Loops . 8
let Declarations in Loops . 9
const Declarations in Loops . 10

Global Block Bindings . 11
Emerging Best Practices for Block Bindings . 12
Summary . 12

2
strIngs And regulAr expressIons 13
Better Unicode Support . 13

UTF-16 Code Points . 14
The codePointAt() Method . 15
The String .fromCodePoint() Method . 16
The normalize() Method . 16
The Regular Expression u Flag . 18

Other String Changes . 19
Methods for Identifying Substrings . 19
The repeat() Method . 20

Other Regular Expression Changes . 21
The Regular Expression y Flag . 21
Duplicating Regular Expressions . 23
The flags Property . 24

x Contents in Detail

Template Literals . 25
Basic Syntax . 26
Multiline Strings . 26
Making Substitutions . 28
Tagged Templates . 29

Summary . 32

3
FunctIons 35
Functions with Default Parameter Values . 36

Simulating Default Parameter Values in ECMAScript 5 36
Default Parameter Values in ECMAScript 6 . 37
How Default Parameter Values Affect the arguments Object 38
Default Parameter Expressions . 40
Default Parameter TDZ . 41

Working with Unnamed Parameters . 43
Unnamed Parameters in ECMAScript 5 . 43
Rest Parameters . 44

Increased Capabilities of the Function Constructor . 46
The Spread Operator . 47
The name Property . 48

Choosing Appropriate Names . 48
Special Cases of the name Property . 49

Clarifying the Dual Purpose of Functions . 50
Determining How a Function Was Called in ECMAScript 5 50
The new .target Metaproperty . 51

Block-Level Functions . 52
Deciding When to Use Block-Level Functions . 53
Block-Level Functions in Non-Strict Mode . 54

Arrow Functions . 54
Arrow Function Syntax . 55
Creating Immediately Invoked Function Expressions . 57
No this Binding . 58
Arrow Functions and Arrays . 60
No arguments Binding . 60
Identifying Arrow Functions . 61

Tail Call Optimization . 61
How Tail Calls Are Different in ECMAScript 6 . 62
How to Harness Tail Call Optimization . 63

Summary . 64

4
expAnded oBject FunctIonAlIty 67
Object Categories . 68
Object Literal Syntax Extensions . 68

Property Initializer Shorthand . 68
Concise Methods . 69
Computed Property Names . 70

Contents in Detail xi

New Methods . 71
The Object .is() Method . 72
The Object .assign() Method . 72

Duplicate Object Literal Properties . 75
Own Property Enumeration Order . 75
Enhancements for Prototypes . 76

Changing an Object’s Prototype . 76
Easy Prototype Access with Super References . 77

A Formal Method Definition . 80
Summary . 81

5
destructurIng For eAsIer dAtA Access 83
Why Is Destructuring Useful? . 84
Object Destructuring . 84

Destructuring Assignment . 85
Default Values . 86
Assigning to Different Local Variable Names . 87
Nested Object Destructuring . 88

Array Destructuring . 90
Destructuring Assignment . 90
Default Values . 92
Nested Array Destructuring . 92
Rest Items . 92

Mixed Destructuring . 93
Destructured Parameters . 94

Destructured Parameters Are Required . 95
Default Values for Destructured Parameters . 96

Summary . 97

6
symBols And symBol propertIes 99
Creating Symbols . 100
Using Symbols . 101
Sharing Symbols . 102
Symbol Coercion . 103
Retrieving Symbol Properties . 104
Exposing Internal Operations with Well-Known Symbols . 105

The Symbol .hasInstance Method . 106
The Symbol .isConcatSpreadable Property . 107
The Symbol .match, Symbol .replace, Symbol .search, and

Symbol .split Properties . 109
The Symbol .toPrimitive Method . 111
The Symbol .toStringTag Property . 112
The Symbol .unscopables Property . 115

Summary . 117

xii Contents in Detail

7
sets And mAps 119
Sets and Maps in ECMAScript 5 . 120
Problems with Workarounds . 121
Sets in ECMAScript 6 . 122

Creating Sets and Adding Items . 122
Removing Items . 123
The forEach() Method for Sets . 124
Converting a Set to an Array . 126
Weak Sets . 127

Maps in ECMAScript 6 . 129
Map Methods . 130
Map Initialization . 131
The forEach() Method for Maps . 131
Weak Maps . 132

Summary . 136

8
IterAtors And generAtors 137
The Loop Problem . 138
What Are Iterators? . 138
What Are Generators? . 139

Generator Function Expressions . 141
Generator Object Methods . 142

Iterables and for-of Loops . 142
Accessing the Default Iterator . 143
Creating Iterables . 144

Built-In Iterators . 145
Collection Iterators . 145
String Iterators . 149
NodeList Iterators . 151

The Spread Operator and Nonarray Iterables . 151
Advanced Iterator Functionality . 152

Passing Arguments to Iterators . 152
Throwing Errors in Iterators . 154
Generator Return Statements . 155
Delegating Generators . 156

Asynchronous Task Running . 159
A Simple Task Runner . 159
Task Running with Data . 160
An Asynchronous Task Runner . 161

Summary . 164

9
IntroducIng jAvAscrIpt clAsses 165
Class-Like Structures in ECMAScript 5 . 166
Class Declarations . 166

A Basic Class Declaration . 166
Why Use the Class Syntax? . 167

Contents in Detail xiii

Class Expressions . 169
A Basic Class Expression . 169
Named Class Expressions . 170

Classes as First-Class Citizens . 172
Accessor Properties . 173
Computed Member Names . 174
Generator Methods . 175
Static Members . 176
Inheritance with Derived Classes . 178

Shadowing Class Methods . 180
Inherited Static Members . 181
Derived Classes from Expressions . 181
Inheriting from Built-Ins . 184
The Symbol .species Property . 185

Using new .target in Class Constructors . 188
Summary . 189

10
Improved ArrAy cApABIlItIes 191
Creating Arrays . 191

The Array .of() Method . 192
The Array .from() Method . 193

New Methods on All Arrays . 196
The find() and findIndex() Methods . 196
The fill() Method . 197
The copyWithin() Method . 197

Typed Arrays . 198
Numeric Data Types . 199
Array Buffers . 199
Manipulating Array Buffers with Views . 200

Similarities Between Typed and Regular Arrays . 207
Common Methods . 207
The Same Iterators . 208
The of() and from() Methods . 208

Differences Between Typed and Regular Arrays . 209
Behavioral Differences . 209
Missing Methods . 210
Additional Methods . 211

Summary . 212

11
promIses And Asynchronous progrAmmIng 213
Asynchronous Programming Background . 214

The Event Model . 214
The Callback Pattern . 215

Promise Basics . 217
The Promise Life Cycle . 217
Creating Unsettled Promises . 219
Creating Settled Promises . 221
Executor Errors . 224

xiv Contents in Detail

Global Promise Rejection Handling . 224
Node .js Rejection Handling . 225
Browser Rejection Handling . 227

Chaining Promises . 228
Catching Errors . 229
Returning Values in Promise Chains . 230
Returning Promises in Promise Chains . 231

Responding to Multiple Promises . 233
The Promise .all() Method . 234
The Promise .race() Method . 235

Inheriting from Promises . 236
Promise-Based Asynchronous Task Running . 237
Summary . 241

12
proxIes And the reFlectIon ApI 243
The Array Problem . 244
Introducing Proxies and Reflection . 244
Creating a Simple Proxy . 245
Validating Properties Using the set Trap . 246
Object Shape Validation Using the get Trap . 247
Hiding Property Existence Using the has Trap . 249
Preventing Property Deletion with the deleteProperty Trap . 250
Prototype Proxy Traps . 252

How Prototype Proxy Traps Work . 252
Why Two Sets of Methods? . 254

Object Extensibility Traps . 255
Two Basic Examples . 255
Duplicate Extensibility Methods . 256

Property Descriptor Traps . 257
Blocking Object .defineProperty() . 258
Descriptor Object Restrictions . 259
Duplicate Descriptor Methods . 260

The ownKeys Trap . 261
Function Proxies with the apply and construct Traps . 262

Validating Function Parameters . 264
Calling Constructors Without new . 265
Overriding Abstract Base Class Constructors . 266
Callable Class Constructors . 267

Revocable Proxies . 268
Solving the Array Problem . 269

Detecting Array Indexes . 270
Increasing length When Adding New Elements . 270
Deleting Elements When Reducing length . 272
Implementing the MyArray Class . 273

Using a Proxy as a Prototype . 275
Using the get Trap on a Prototype . 276
Using the set Trap on a Prototype . 277
Using the has Trap on a Prototype . 278
Proxies as Prototypes on Classes . 279

Summary . 282

Contents in Detail xv

13
encApsulAtIng code wIth modules 283
What Are Modules? . 283
Basic Exporting . 284
Basic Importing . 285

Importing a Single Binding . 286
Importing Multiple Bindings . 286
Importing an Entire Module . 286
A Subtle Quirk of Imported Bindings . 288

Renaming Exports and Imports . 288
Default Values in Modules . 289

Exporting Default Values . 289
Importing Default Values . 290

Re-exporting a Binding . 291
Importing Without Bindings . 292
Loading Modules . 293

Using Modules in Web Browsers . 293
Browser Module Specifier Resolution . 297

Summary . 298

A
mInor chAnges In ecmAscrIpt 6 299
Working with Integers . 299

Identifying Integers . 300
Safe Integers . 300

New Math Methods . 301
Unicode Identifiers . 302
Formalizing the __proto__ Property . 303

B
understAndIng ecmAscrIpt 7 (2016) 305
The Exponentiation Operator . 306

Order of Operations . 306
Operand Restriction . 306

The Array .prototype .includes() Method . 307
How to Use Array .prototype .includes() . 307
Value Comparison . 308

A Change to Function-Scoped Strict Mode . 308

Index 311

F o r e w o r d

ECMAScript 6 has taken the world by storm. It came long after people
stopped waiting for it, and then it spread faster than most people could
learn it. Everybody has a different story about it. Here is mine.

In 2013, I worked at a startup that pivoted from iOS to the web. It was
before I co-created Redux or participated in the JavaScript open source
community. At the time, I was struggling to learn web development, and
I was terrified. My team had to build a web version of our product from
scratch in just a few months. In JavaScript.

At first I scoffed at the idea of writing something large in JavaScript.
But a new team member persuaded me that JavaScript was not a toy lan-
guage. I agreed to give it a try. I set my prejudices aside, opened MDN and
StackOverflow, and learned JavaScript in depth for the first time. The sim-
plicity I discovered enchanted me. My colleague also taught me how to use
tools such as a linter and a bundler. In a few weeks, I woke up and realized
that I enjoyed writing JavaScript.

But no language is perfect. I missed the frequent updates that I’d
come to expect after working with other languages. The only substan-
tial update to JavaScript in a decade, ECMAScript 5, was a mere cleanup
that nevertheless took years for browsers to fully support. At the time, the

xviii Foreword

upcoming ECMAScript 6 (ES6) specification, codenamed Harmony, was far
from finished and seemed like a distant future. “Maybe in 10 years I’ll get to
write some ES6 code,” I thought.

There were some experimental “transpilers” like Google Traceur that
translated code from ES6 into ES5. Most of them were very limited or hard
to plug into an existing JavaScript build pipeline. But then a new transpiler
called 6to5 came along and changed everything. It was easy to install, inte-
grated well with the existing tools, and produced readable code. It spread
like wildfire. Now called Babel, 6to5 brought ES6 features to a mainstream
audience even before the specification was finalized. In a matter of months,
ES6 was everywhere.

ES6 has divided the community for a number of reasons. As this book
goes to press, it is still not fully implemented in many major browsers.
Having a build step can be intimidating when you’re just learning the
language. Some libraries have documentation and examples in ES6, and
you might wonder if it is possible to use those libraries in ES5 at all. This
contributes to the confusion. Many people didn’t expect any new features
in the language because it had almost never changed before. Others anx-
iously awaited the new features’ arrival and used all of them together—in
some cases beyond what was necessary.

Just as I was becoming proficient with JavaScript, I felt that somebody
pulled the rug from under my feet, and now I had to learn a new language.
I felt bad about this for a few months. Finally, on Christmas Eve, I started
reading a draft of this book. I couldn’t put it down. Next thing I knew, it
was 3 am, everybody at the party was asleep, and I understood ES6!

Nicholas is an incredibly gifted teacher. He conveys deep details in a
straightforward way so they don’t go over your head. Apart from this book,
he is also known for creating ESLint, a JavaScript code analyzer that has
been downloaded millions of times.

Nicholas knows JavaScript like very few people do. Don’t miss the
chance to soak up some of his knowledge. Read this book, and you, too,
will become confident in your understanding of ES6.

Dan Abramov
React core team member and creator of Redux

a c k n o w l e d g m e n t s

Thanks to Jennifer Griffith-Delgado, Alison Law, and everyone at No Starch
Press for their support and help with this book. Their understanding and
patience as my productivity slowed to a crawl during my extended illness is
something I will never forget.

I’m grateful for the watchful eye of Juriy Zaytsev as technical editor and
to Dr. Axel Rauschmayer for his feedback and several conversations that
helped to clarify some of the concepts discussed in this book.

Thanks to everyone who submitted fixes to the version of this
book that is hosted on GitHub: 404, alexyans, Ahmad Ali, Raj Anand,
Arjunkumar, Pahlevi Fikri Auliya, Mohsen Azimi, Peter Bakondy, Sarbbottam
Bandyopadhyay, blacktail, Philip Borisov, Nick Bottomley, Ethan Brown,
Jeremy Caney, Jake Champion, David Chang, Carlo Costantini, Aaron Dandy,
Niels Dequeker, Aleksandar Djindjic, Joe Eames, Lewis Ellis, Ronen Elster,
Jamund Ferguson, Steven Foote, Ross Gerbasi, Shaun Hickson, Darren
Huskie, jakub-g, kavun, Navaneeth Kesavan, Dan Kielp, Roy Ling, Roman
Lo, Lonniebiz, Kevin Lozandier, Josh Lubaway, Mallory, Jakub Narębski,
Robin Pokorný, Kyle Pollock, Francesco Pongiluppi, Nikolas Poniros,
AbdulFattah Popoola, Ben Regenspan, Adam Richeimer, robertd, Marián
Rusnák, Paul Salaets, Shidhin, ShMcK, Kyle Simpson, Igor Skuhar, Yang
Su, Erik Sundahl, Dmitri Suvorov, Kevin Sweeney, Prayag Verma, Rick
Waldron, Kale Worsley, Juriy Zaytsev, and Eugene Zubarev.

Also, thanks to Casey Visco, who supported this book on Patreon.

I n t r o d u c t I o n

The JavaScript core language features are
defined in the ECMA-262 standard. The

language defined in this standard is called
ECMAScript. What you know as JavaScript

in browsers and in Node.js is actually a superset of
ECMAScript. Browsers and Node.js add more func-
tionality through additional objects and methods,
but the core of JavaScript remains as defined in ECMAScript. The ongoing
development of ECMA-262 is vital to the success of JavaScript as a whole, and
this book covers the changes brought about by the most recent major update
to the language: ECMAScript 6.

The Road to ECMAScript 6
In 2007, JavaScript was at a crossroads. The popularity of Ajax was usher-
ing in a new age of dynamic web applications, whereas JavaScript hadn’t
changed since the third edition of ECMA-262 was published in 1999.

xxii Introduction

TC-39, the committee responsible for driving the ECMAScript develop-
ment process, put together a large draft specification for ECMAScript 4.
ECMAScript 4 was massive in scope, introducing both small and large
changes to the language. Updated features included new syntax, modules,
classes, classical inheritance, private object members, optional type annota-
tions, and more.

The scope of the ECMAScript 4 changes caused a rift to form in TC-39:
some members felt that the fourth edition was trying to accomplish too
much. A group of leaders from Yahoo!, Google, and Microsoft created an
alternate proposal for the next version of ECMAScript that the group ini-
tially called ECMAScript 3.1. The “3.1” designation was intended to show
that this version was an incremental change to the existing standard.

ECMAScript 3.1 introduced very few syntax changes; instead, it
focused on property attributes, native JSON support, and adding meth-
ods to already existing objects. Although an early attempt was made to
reconcile ECMAScript 3.1 and ECMAScript 4, the effort ultimately failed
because the two camps had difficulty resolving the very different perspec-
tives on how the language should grow.

In 2008, Brendan Eich, the creator of JavaScript, announced that
TC-39 would focus its efforts on standardizing ECMAScript 3.1. It would
table the major syntax and feature changes of ECMAScript 4 until after
the next version of ECMAScript was standardized, and all members of the
committee would work to bring the best pieces of ECMAScript 3.1 and 4
together after that point into an effort initially nicknamed ECMAScript
Harmony.

ECMAScript 3.1 was eventually standardized as the fifth edition
of ECMA-262, also described as ECMAScript 5. The committee never
released an ECMAScript 4 standard to avoid confusion with the now-
defunct effort of the same name. Work then began on ECMAScript
Harmony, with ECMAScript 6 being the first standard released in this
new “harmonious” spirit.

ECMAScript 6 reached feature complete status in 2015 and was
formally dubbed “ECMAScript 2015.” (But this text still refers to it as
ECMAScript 6, the name most familiar to developers.) The features vary
widely from completely new objects and patterns to syntax changes and
new methods on existing objects. The exciting aspect of ECMAScript 6 is
that all of its changes are geared toward solving problems that developers
actually face.

About This Book
A good understanding of ECMAScript 6 features is critical for all JavaScript
developers going forward. The language features introduced in ECMA-
Script 6 represent the foundation upon which JavaScript applications will
be built for the foreseeable future. That’s where this book comes in. My
hope is that you’ll read this book to learn about ECMAScript 6 features so
you’ll be ready to start using them as soon as you need to.

Introduction xxiii

Browser and Node.js Compatibility
Many JavaScript environments, such as web browsers and Node.js, are
actively working on implementing ECMAScript 6. This book doesn’t
attempt to address the inconsistencies between implementations; instead,
it focuses on what the specification defines as the correct behavior. As
such, it’s possible that your JavaScript environment may not conform to
the behavior described in this book.

Who This Book Is For
This book is intended as a guide for those who are already familiar with
JavaScript and ECMAScript 5. Although a deep understanding of the lan-
guage isn’t necessary to use this book, it will help you understand the dif-
ferences between ECMAScript 5 and 6. In particular, this book is aimed at
intermediate-to-advanced JavaScript developers programming for a browser
or Node.js environment who want to learn about the latest developments in
the language.

This book is not for beginners who have never written JavaScript. You’ll
need to have a good basic understanding of the language to use this book.

Overview
Each chapter and appendix in this book covers a different aspect of
ECMAScript 6. Many chapters start by discussing problems that ECMA-
Script 6 changes were made to solve to give you a broader context for those
changes. All chapters include code examples to help you learn new syntax
and concepts.

•	 Chapter 1: Block Bindings talks about let and const, the block-level
replacement for var.

•	 Chapter 2: Strings and Regular Expressions covers additional func-
tionality for string manipulation and inspection as well as the introduc-
tion of template strings.

•	 Chapter 3: Functions discusses the various changes to functions,
including the arrow function form, default parameters, rest param-
eters, and a few other features.

•	 Chapter 4: Expanded Object Functionality explains the changes to
how objects are created, modified, and used. Topics include changes to
object literal syntax and new reflection methods.

•	 Chapter 5: Destructuring for Easier Data Access introduces object and
array destructuring, which allow you to decompose objects and arrays
using a concise syntax.

•	 Chapter 6: Symbols and Symbol Properties introduces the concept of
symbols, a new way to define properties. Symbols are a new primitive
type that you can use to obscure (but not hide) object properties and
methods.

xxiv Introduction

•	 Chapter 7: Sets and Maps details the new collection types of Set, WeakSet,
Map, and WeakMap. These types expand on the usefulness of arrays by add-
ing semantics, de-duping, and memory management designed specifi-
cally for JavaScript.

•	 Chapter 8: Iterators and Generators discusses the addition of iterators
and generators to the language. These features allow you to work with
collections of data in powerful ways that were not possible in previous
versions of JavaScript.

•	 Chapter 9: Introducing JavaScript Classes introduces the first formal
concept of classes in JavaScript. Often a point of confusion for those
coming from other languages, the addition of class syntax in JavaScript
makes the language more approachable to others and more concise for
enthusiasts.

•	 Chapter 10: Improved Array Capabilities details the changes to native
arrays and the useful new ways you can use them in JavaScript.

•	 Chapter 11: Promises and Asynchronous Programming introduces
promises as a new part of the language. Promises were a grassroots
effort that eventually took off and gained popularity due to extensive
library support. ECMAScript 6 formalizes promises and makes them
available by default.

•	 Chapter 12: Proxies and the Reflection API introduces the formalized
reflection API for JavaScript and the new proxy object that allows you to
intercept every operation performed on an object. Proxies give develop-
ers unprecedented control over objects and, as such, unlimited possi-
bilities for defining new interaction patterns.

•	 Chapter 13: Encapsulating Code with Modules details the official
module format for JavaScript. The intent is that these modules can
replace the numerous ad hoc module definition formats that have
appeared over the years.

•	 Appendix A: Minor Changes in ECMAScript 6 covers other changes
implemented in ECMAScript 6 that you’ll use less frequently or that
didn’t quite fit into the broader major topics covered in each chapter.

•	 Appendix B: Understanding ECMAScript 7 (2016) describes the three
additions to the standard that were implemented in ECMAScript 7,
which didn’t impact JavaScript nearly as much as ECMAScript 6.

Conventions Used
The following typographical conventions are used in this book:

•	 Italics are used for new terms and filenames.

•	 Constant width indicates a code term within the text.

Introduction xxv

Additionally, longer code examples are contained in constant width
code blocks, such as the following:

function doSomething() {
 // empty
}

Within a code block, comments to the right of a console.log() statement
indicate the output you’ll see in the browser or Node.js console when the
code is executed; for example:

console.log("Hi"); // "Hi"

If a line of code in a code block throws an error, it is also indicated to
the right of the code:

doSomething(); // throws an error

Help and Support
If you have questions as you read this book, please send a message to my
mailing list at http://groups.google.com/group/zakasbooks.

http://groups.google.com/group/zakasbooks

1
B l o c k B i n d i n g s

Traditionally, the way variable declara-
tions work has been one tricky part of pro-

gramming in JavaScript. In most C-based
languages, variables (more formally known as

bindings, as a name is bound to a value inside a scope)
are created at the spot where the declaration occurs.
In JavaScript, however, this is not the case. Where
your variables are actually created depends on how you declare them,
and ECMAScript 6 offers options to make controlling scope easier. This
chapter demonstrates why classic var declarations can be confusing, intro-
duces block-level bindings in ECMAScript 6, and then offers some best
practices for using them.

2 Chapter 1

var Declarations and Hoisting
Variable declarations using var are treated as if they’re at the top of the func-
tion (or in the global scope, if declared outside of a function) regardless of
where the actual declaration occurs; this is called hoisting. For a demonstra-
tion of what hoisting does, consider the following function definition:

function getValue(condition) {

 if (condition) {
 var value = "blue";

 // other code

 return value;
 } else {

 // value exists here with a value of undefined

 return null;
 }

 // value exists here with a value of undefined
}

If you are unfamiliar with JavaScript, you might expect the variable
value to be created only if condition evaluates to true. In fact, the vari-
able value is created regardless. Behind the scenes, the JavaScript engine
changes the getValue function to look like this:

function getValue(condition) {

 var value;

 if (condition) {
 value = "blue";

 // other code

 return value;
 } else {

 return null;
 }
}

The declaration of value is hoisted to the top, and the initialization
remains in the same spot. That means the variable value is still accessible
from within the else clause. If accessed from the else clause, the variable
would just have a value of undefined because it hasn’t been initialized in the
else block.

Block Bindings 3

It often takes new JavaScript developers some time to get used to dec-
laration hoisting, and misunderstanding this unique behavior can end up
causing bugs. For this reason, ECMAScript 6 introduces block-level scoping
options to give developers more control over a variable’s life cycle.

Block-Level Declarations
Block-level declarations declare bindings that are inaccessible outside a
given block scope. Block scopes, also called lexical scopes, are created in the
following places:

•	 Inside a function

•	 Inside a block (indicated by the { and } characters)

Block scoping is how many C-based languages work, and the introduc-
tion of block-level declarations in ECMAScript 6 is intended to provide that
same flexibility (and uniformity) to JavaScript.

let Declarations
The let declaration syntax is the same as the syntax for var. You can basi-
cally replace var with let to declare a variable but limit the variable’s scope
to only the current code block (there are a few other subtle differences,
which are discussed in “The Temporal Dead Zone” on page 6). Because
let declarations are not hoisted to the top of the enclosing block, it’s best
to place let declarations first in the block so they’re available to the entire
block. Here’s an example:

function getValue(condition) {

 if (condition) {
 let value = "blue";

 // other code

 return value;
 } else {

 // value doesn't exist here

 return null;
 }

 // value doesn't exist here
}

This version of the getValue function behaves more similarly to how
you’d expect it to in other C-based languages. Because the variable value
is declared using let instead of var, the declaration isn’t hoisted to the top

4 Chapter 1

of the function definition, and the variable value is no longer accessible
once execution flows out of the if block. If condition evaluates to false, then
value is never declared or initialized.

No Redeclaration
If an identifier has already been defined in a scope, using the identifier
in a let declaration inside that scope causes an error to be thrown. For
example:

var count = 30;

// throws an error
let count = 40;

In this example, count is declared twice: once with var and once with
let. Because let will not redefine an identifier that already exists in the
same scope, the let declaration will throw an error. Conversely, no error is
thrown if a let declaration creates a new variable with the same name as a
variable in its containing scope, as demonstrated in the following code:

var count = 30;

if (condition) {

 // doesn't throw an error
 let count = 40;

 // more code
}

This let declaration doesn’t throw an error because it creates a new
variable called count within the if statement instead of creating count in the
surrounding block. Inside the if block, this new variable shadows the global
count, preventing access to it until execution exits the block.

const Declarations
You can also define bindings in ECMAScript 6 with the const declaration
syntax. Bindings declared using const are considered constants, meaning
their values cannot be changed once set. For this reason, every const bind-
ing must be initialized on declaration, as shown in this example:

// valid constant
const maxItems = 30;

// syntax error: missing initialization
const name;

Block Bindings 5

The maxItems binding is initialized, so its const declaration will work
without a problem. However, the name binding would cause a syntax error
if you tried to run the program containing this code because name is not
initialized.

Constants vs. let Declarations

Constants, like let declarations, are block-level declarations. That means
constants are no longer accessible once execution flows out of the block
in which they were declared, and declarations are not hoisted, as demon-
strated in this example:

if (condition) {
 const maxItems = 5;

 // more code
}

// maxItems isn't accessible here

In this code, the constant maxItems is declared within an if statement.
After the statement finishes executing, maxItems is not accessible outside that
block.

In another similarity to let, a const declaration throws an error when
made with an identifier for an already defined variable in the same scope.
It doesn’t matter whether that variable was declared using var (for global or
function scope) or let (for block scope). For example, consider this code:

var message = "Hello!";
let age = 25;

// each of these throws an error
const message = "Goodbye!";
const age = 30;

The two const declarations would be valid alone, but given the previous
var and let declarations in this case, they are syntax errors.

Despite those similarities, there is one significant difference between
let and const. Attempting to assign a const to a previously defined constant
will throw an error in both strict and non-strict modes:

const maxItems = 5;

// throws an error
maxItems = 6;

Much like constants in other languages, the maxItems variable can’t
be assigned a new value later on. However, unlike constants in other lan-
guages, the value a constant holds can be modified if it is an object.

6 Chapter 1

Object Declarations with const

A const declaration prevents modification of the binding, not of the value.
That means const declarations for objects don’t prevent modification of
those objects. For example:

const person = {
 name: "Nicholas"
};

// works
person.name = "Greg";

// throws an error
person = {
 name: "Greg"
};

Here, the binding person is created with an initial value of an object
with one property. It’s possible to change person.name without causing an
error because this changes what person contains but doesn’t change the
value that person is bound to. When this code attempts to assign a value to
person (thus attempting to change the binding), an error will be thrown.
This subtlety in how const works with objects is easy to misunderstand. Just
keep in mind that const prevents modification of the binding, not modifica-
tion of the bound value.

The Temporal Dead Zone
A variable declared with either let or const cannot be accessed until after the
declaration. Attempting to do so results in a reference error, even when using
normally safe operations, such as the typeof operation in this if statement:

if (condition) {
 console.log(typeof value); // throws an error
 let value = "blue";
}

Here, the variable value is defined and initialized using let, but that
statement is never executed because the previous line throws an error.
The issue is that value exists in what the JavaScript community has dubbed
the temporal dead zone (TDZ). The TDZ is never named explicitly in the
ECMAScript specification, but the term is often used to describe why let
and const bindings are not accessible before their declaration. This sec-
tion covers some subtleties of declaration placement that the TDZ causes,
and although the examples shown use let, note that the same information
applies to const.

When a JavaScript engine looks through an upcoming block and finds
a variable declaration, it either hoists the declaration to the top of the func-
tion or global scope (for var) or places the declaration in the TDZ (for let
and const). Any attempt to access a variable in the TDZ results in a runtime

Block Bindings 7

error. That variable is only removed from the TDZ, and therefore is safe to
use, once execution flows to the variable declaration.

This is true anytime you attempt to use a variable declared with let or
const before it’s been defined. As the previous example demonstrated, this
even applies to the normally safe typeof operator. However, you can use
typeof on a variable outside the block where that variable is declared with-
out throwing an error, although it may not produce the results you’re after.
Consider this code:

console.log(typeof value); // "undefined"

if (condition) {
 let value = "blue";
}

The variable value isn’t in the TDZ when the typeof operation executes
because it occurs outside the block in which value is declared. That means
there is no value binding, and typeof simply returns "undefined".

The TDZ is just one unique aspect of block bindings. Another unique
aspect has to do with their use inside loops.

Block Bindings in Loops
Perhaps one area where developers most want block-level scoping of vari-
ables is within for loops, where the throwaway counter variable is meant to
be used only inside the loop. For instance, it’s not uncommon to see code
like this in JavaScript:

for (var i = 0; i < 10; i++) {
 process(items[i]);
}

// i is still accessible here
console.log(i); // 10

In other languages where block-level scoping is the default, this example
should work as intended—only the for loop should have access to the i vari-
able. However, in JavaScript, the variable i is still accessible after the loop
is completed because the var declaration is hoisted. Using let instead, as in
the following code, should produce the intended behavior:

for (let i = 0; i < 10; i++) {
 process(items[i]);
}

// i is not accessible here - throws an error
console.log(i);

In this example, the variable i exists only within the for loop. When the
loop is complete, the variable is no longer accessible elsewhere.

8 Chapter 1

Functions in Loops
The characteristics of var have long made creating functions inside loops
problematic, because the loop variables are accessible from outside the
scope of the loop. Consider the following code:

var funcs = [];

for (var i = 0; i < 10; i++) {
 funcs.push(function() {
 console.log(i);
 });
}

funcs.forEach(function(func) {
 func(); // outputs the number "10" ten times
});

You might ordinarily expect this code to print the numbers 0 to 9, but
it outputs the number 10 ten times in a row. The reason is that i is shared
across each iteration of the loop, meaning the functions created inside the
loop all hold a reference to the same variable. The variable i has a value
of 10 when the loop completes, so when console.log(i) is called, that value
prints each time.

To fix this problem, developers use immediately invoked function expres-
sions (IIFEs) inside loops to force a new copy of the variable they want to
iterate over to be created, as in this example:

var funcs = [];

for (var i = 0; i < 10; i++) {
 funcs.push((function(value) {
 return function() {
 console.log(value);
 }
 }(i)));
}

funcs.forEach(function(func) {
 func(); // outputs 0, then 1, then 2, up to 9
});

This version uses an IIFE inside the loop. The i variable is passed to
the IIFE, which creates its own copy and stores it as value. This is the value
used by the function for that iteration, so calling each function returns
the expected value as the loop counts up from 0 to 9. Fortunately, block-
level binding with let and const in ECMAScript 6 can simplify this loop
for you.

Block Bindings 9

let Declarations in Loops
A let declaration simplifies loops by effectively mimicking what the IIFE
does in the previous example. On each iteration, the loop creates a new
variable and initializes it to the value of the variable with the same name
from the previous iteration. That means you can omit the IIFE altogether
and get the results you expect, like this:

var funcs = [];

for (let i = 0; i < 10; i++) {
 funcs.push(function() {
 console.log(i);
 });
}

funcs.forEach(function(func) {
 func(); // outputs 0, then 1, then 2, up to 9
})

This loop works exactly like the loop that used var and an IIFE but is
arguably cleaner. The let declaration creates a new variable i each time
through the loop, so each function created inside the loop gets its own
copy of i. Each copy of i has the value it was assigned at the beginning of
the loop iteration in which it was created. The same is true for for-in and
for-of loops, as shown here:

var funcs = [],
 object = {
 a: true,
 b: true,
 c: true
 };

for (let key in object) {
 funcs.push(function() {
 console.log(key);
 });
}

funcs.forEach(function(func) {
 func(); // outputs "a", then "b", then "c"
});

In this example, the for-in loop shows the same behavior as the for
loop. Each time through the loop, a new key binding is created, so each
function has its own copy of the key variable. The result is that each func-
tion outputs a different value. If var were used to declare key, all functions
would output "c".

10 Chapter 1

n o t e It’s important to understand that the behavior of let declarations in loops is a spe-
cially defined behavior in the specification and is not necessarily related to the non-
hoisting characteristics of let. In fact, early implementations of let did not exhibit
this behavior, because it was added later in the process.

const Declarations in Loops
The ECMAScript 6 specification doesn’t explicitly disallow const declara-
tions in loops; however, const behaves differently based on the type of loop
you’re using. For a normal for loop, you can use const in the initializer,
but the loop will throw a warning if you attempt to change the value. For
example:

var funcs = [];

// throws an error after one iteration
for (const i = 0; i < 10; i++) {
 funcs.push(function() {
 console.log(i);
 });
}

In this code, the i variable is declared as a constant. The first iteration
of the loop, where i is 0, executes successfully. An error is thrown when i++
executes because it’s attempting to modify a constant. As such, you can only
use const to declare a variable in the loop initializer if you’re not modifying
that variable.

On the other hand, when used in a for-in or for-of loop, a const vari-
able behaves similarly to a let variable. Therefore, the following should not
cause an error:

var funcs = [],
 object = {
 a: true,
 b: true,
 c: true
 };

// doesn't cause an error
for (const key in object) {
 funcs.push(function() {
 console.log(key);
 });
}

funcs.forEach(function(func) {
 func(); // outputs "a", then "b", then "c"
});

Block Bindings 11

This code functions almost the same as the second example in “let
Declarations in Loops” on page 9. The only difference is that the value
of key cannot be changed inside the loop. The for-in and for-of loops
work with const because the loop initializer creates a new binding on each
iteration through the loop rather than attempting to modify the value of an
existing binding (as was the case in the for loop example).

Global Block Bindings
Another way in which let and const are different from var is in their global
scope behavior. When var is used in the global scope, it creates a new global
variable, which is a property on the global object (window in browsers). That
means you can accidentally overwrite an existing global using var, as this
code does:

// in a browser
var RegExp = "Hello!";
console.log(window.RegExp); // "Hello!"

var ncz = "Hi!";
console.log(window.ncz); // "Hi!"

Even though the RegExp global is defined on the window object, it is not
safe from being overwritten by a var declaration. This example declares
a new global variable RegExp that overwrites the original. Similarly, ncz is
defined as a global variable and then defined as a property on window imme-
diately afterward, which is the way JavaScript has always worked.

If you instead use let or const in the global scope, a new binding is
created in the global scope but no property is added to the global object.
That also means you cannot overwrite a global variable using let or const
declarations; you can only shadow it. Here’s an example:

// in a browser
let RegExp = "Hello!";
console.log(RegExp); // "Hello!"
console.log(window.RegExp === RegExp); // false

const ncz = "Hi!";
console.log(ncz); // "Hi!"
console.log("ncz" in window); // false

A new let declaration for RegExp creates a binding that shadows the global
RegExp. Because window.RegExp and RegExp are not the same, there is no disrup-
tion to the global scope. Also, the const declaration for ncz creates a binding
but does not create a property on the global object. This lack of global object
modification makes let and const much safer to use in the global scope when
you don’t want to create properties on the global object.

12 Chapter 1

n o t e You might still want to use var in the global scope if you have code that should be
available from the global object. This is most common in a browser when you want to
access code across frames or windows.

Emerging Best Practices for Block Bindings
While ECMAScript 6 was in development, there was widespread belief you
should use let by default instead of var for variable declarations. For many
JavaScript developers, let behaves exactly the way they thought var should
have behaved, so the direct replacement made logical sense. In this case,
you would use const for variables that needed modification protection.

However, as more developers migrated to ECMAScript 6, an alternate
approach gained popularity: use const by default, and only use let when you
know a variable’s value needs to change. The rationale is that most variables
should not change their value after initialization because unexpected value
changes are a source of bugs. This idea has a significant amount of traction
and is worth exploring in your code as you adopt ECMAScript 6.

Summary
The let and const block bindings introduce lexical scoping to JavaScript.
These declarations are not hoisted and only exist within the block in which
they’re declared. Block bindings offer behavior that is more like other lan-
guages and less likely to cause unintentional errors, because variables can
now be declared exactly where they’re needed. As a side effect, you cannot
access variables before they’re declared, even with safe operators, such as
typeof. Attempting to access a block binding before its declaration results in
an error due to the binding’s presence in the TDZ.

In many cases, let and const behave in a manner similar to var; however,
this is not true in loops. Inside for-in and for-of loops, both let and const
create a new binding with each iteration through the loop. As a result, func-
tions created inside the loop body can access the loop bindings’ current
values rather than their values after the loop’s final iteration (the behav-
ior with var). The same is true for let declarations in for loops, whereas
attempting to use a const declaration in a for loop may result in an error.

The current best practice for block bindings is to use const by default
and only use let when you know a variable’s value needs to change. Doing
so ensures a basic level of immutability in code that can help prevent cer-
tain types of errors.

2
S t r i n g S a n d r e g u l a r

e x p r e S S i o n S

Strings are arguably one of the most
important data types in programming.

They’re in nearly every higher-level pro-
gramming language, and being able to work

with them effectively is fundamental for developers to
create useful programs. By extension, regular expres-
sions are important because of the extra power they
give developers to wield on strings. With these facts in mind, the creators
of ECMAScript 6 improved strings and regular expressions by adding new
capabilities and long-missing functionality. This chapter provides a tour of
both types of changes.

Better Unicode Support
Before ECMAScript 6, JavaScript strings assumed each 16-bit sequence,
called a code unit, represented a single character. All string properties and
methods, like the length property and the charAt() method, were based on

14 Chapter 2

these 16-bit code units. Of course, 16 bits used to be enough to contain any
character. That’s no longer true thanks to the expanded character set intro-
duced by Unicode.

UTF-16 Code Points
Limiting character length to 16 bits wasn’t possible for Unicode’s stated
goal of providing a globally unique identifier to every character in the
world. These globally unique identifiers, called code points, are simply
numbers starting at 0. Code points are what you may think of as charac-
ter codes, where a number represents a character. A character encoding
must encode code points into code units that are internally consistent.
For UTF-16, code points can consist of many code units.

The first 216 code points in UTF-16 are represented as single 16-bit code
units. This range is called the Basic Multilingual Plane (BMP). Everything
beyond this range is considered to be in one of the supplementary planes,
where the code points can no longer be represented in just 16 bits. UTF-16
solves this problem by introducing surrogate pairs in which a single code
point is represented by two 16-bit code units. That means any single char-
acter in a string can be either one code unit for BMP characters, for a total
of 16 bits, or two units for supplementary plane characters, for a total of
32 bits.

In ECMAScript 5, all string operations work on 16-bit code units, mean-
ing that you can get unexpected results from UTF-16 encoded strings con-
taining surrogate pairs, as in this example:

let text = "𠮷";

console.log(text.length); // 2
console.log(/^.$/.test(text)); // false
console.log(text.charAt(0)); // ""
console.log(text.charAt(1)); // ""
console.log(text.charCodeAt(0)); // 55362
console.log(text.charCodeAt(1)); // 57271

The single Unicode character "𠮷" is represented using surrogate pairs,
and as such, the JavaScript string operations in this example treat the string
as having two 16-bit characters. That means:

•	 The length of text is 2 when it should be 1.

•	 A regular expression trying to match a single character fails because it
thinks there are two characters.

•	 The charAt() method is unable to return a valid character string
because neither set of 16 bits corresponds to a printable character.

•	 The charCodeAt() method also can’t identify the character properly. It
returns the appropriate 16-bit number for each code unit, but that is
the closest you could get to the real value of text in ECMAScript 5.

Strings and Regular Expressions 15

But ECMAScript 6 enforces UTF-16 string encoding to address prob-
lems like these. Standardizing string operations based on this character
encoding means that JavaScript can support functionality designed to work
specifically with surrogate pairs. The rest of this section discusses a few key
examples of that functionality.

The codePointAt() Method
One method ECMAScript 6 added to fully support UTF-16 is the codePointAt()
method, which retrieves the Unicode code point that maps to a given posi-
tion in a string. This method accepts the code unit position rather than the
character position and returns an integer value. Compare its results with
those of charCodeAt():

let text = "𠮷a";

console.log(text.charCodeAt(0)); // 55362
console.log(text.charCodeAt(1)); // 57271
console.log(text.charCodeAt(2)); // 97

console.log(text.codePointAt(0)); // 134071
console.log(text.codePointAt(1)); // 57271
console.log(text.codePointAt(2)); // 97

The codePointAt() method returns the same value as the charCodeAt()
method unless it operates on non-BMP characters. The first character in
text is non-BMP and is therefore composed of two code units, meaning
the length property is 3 rather than 2. The charCodeAt() method returns
only the first code unit for position 0, but codePointAt() returns the full
code point, even though the code point spans multiple code units. Both
methods return the same value for positions 1 (the second code unit of
the first character) and 2 (the "a" character).

Calling the codePointAt() method on a character is the easiest way to
determine whether that character is represented by one or two code points.
Here’s a function you could write to check:

function is32Bit(c) {
 return c.codePointAt(0) > 0xFFFF;
}

console.log(is32Bit("𠮷")); // true
console.log(is32Bit("a")); // false

The upper bound of 16-bit characters is represented in hexadecimal as
FFFF, so any code point greater than that number must be represented by
two code units, for a total of 32 bits.

16 Chapter 2

The String.fromCodePoint() Method
When JavaScript provides a way to do something, it also provides a way
to do the reverse. You can use codePointAt() to retrieve the code point for
a character in a string, whereas String.fromCodePoint() produces a single-
character string from a given code point. For example:

console.log(String.fromCodePoint(134071)); // "𠮷"

Think of String.fromCodePoint() as a more complete version of the
String.fromCharCode() method. Both give the same result for all characters
in the BMP. Only when you pass code points for characters outside of the
BMP is there a difference.

The normalize() Method
Another interesting aspect of Unicode is that different characters can be
considered equivalent for sorting or other comparison-based operations.
There are two ways to define these relationships. The first relationship,
canonical equivalence, means that two sequences of code points are consid-
ered interchangeable in all respects. For example, a combination of two
characters can be canonically equivalent to one character. The second rela-
tionship is compatibility. Two compatible sequences of code points look dif-
ferent but can be used interchangeably in certain situations.

Due to these relationships, two strings representing fundamentally the
same text can contain different code point sequences. For example, the
character “æ” and the two-character string “ae” can be used interchange-
ably but are strictly not equivalent unless normalized in some way.

ECMAScript 6 supports Unicode normalization forms by giving strings
a normalize() method. This method optionally accepts a single string param-
eter that indicates that one of the following Unicode normalization forms
should be applied:

•	 Normalization Form Canonical Composition ("NFC"), the default

•	 Normalization Form Canonical Decomposition ("NFD")

•	 Normalization Form Compatibility Composition ("NFKC")

•	 Normalization Form Compatibility Decomposition ("NFKD")

It’s beyond the scope of this book to explain the differences between
these four forms. Just keep in mind that when you’re comparing strings,
both strings must be normalized to the same form. For example:

let normalized = values.map(function(text) {
 return text.normalize();
});

normalized.sort(function(first, second) {
 if (first < second) {
 return -1;

Strings and Regular Expressions 17

 } else if (first === second) {
 return 0;
 } else {
 return 1;
 }
});

This code converts the strings in the values array into a normalized
form so the array can be sorted appropriately. You can also sort the original
array by calling normalize() as part of the comparator, as follows:

values.sort(function(first, second) {
 let firstNormalized = first.normalize(),
 secondNormalized = second.normalize();

 if (firstNormalized < secondNormalized) {
 return -1;
 } else if (firstNormalized === secondNormalized) {
 return 0;
 } else {
 return 1;
 }
});

Once again, the most important aspect to note about this code is that
both first and second are normalized in the same way. These examples used
the default, NFC, but you can easily specify one of the others, like this:

values.sort(function(first, second) {
 let firstNormalized = first.normalize("NFD"),
 secondNormalized = second.normalize("NFD");

 if (firstNormalized < secondNormalized) {
 return -1;
 } else if (firstNormalized === secondNormalized) {
 return 0;
 } else {
 return 1;
 }
});

If you’ve never worried about Unicode normalization before, you prob-
ably won’t have much use for this method now. But if you ever work on an
internationalized application, you’ll definitely find the normalize() method
helpful.

New methods aren’t the only improvements that ECMAScript 6 pro-
vides for working with Unicode strings. ECMAScript 6 also introduces
the regular expression u flag and other changes to strings and regular
expressions.

18 Chapter 2

The Regular Expression u Flag
You can accomplish many common string operations through regular expres-
sions. But remember that regular expressions assume 16-bit code units, where
each represents a single character. To address this problem, ECMAScript 6
defines a u flag (which stands for Unicode) for use in regular expressions.

The u Flag in Action

When a regular expression has the u flag set, it switches modes to work on
characters, not code units. That means the regular expression should no
longer treat surrogate pairs as separate characters in strings and should
behave as expected. For example, consider this code:

let text = "𠮷";

console.log(text.length); // 2
console.log(/^.$/.test(text)); // false
console.log(/^.$/u.test(text)); // true

The regular expression /^.$/ matches any input string with a single
character. When it’s used without the u flag, this regular expression matches
on code units, so the Japanese character (which is represented by two code
units) doesn’t match the regular expression. When it’s used with the u flag,
the regular expression compares characters instead of code units, so the
Japanese character matches.

Counting Code Points

Unfortunately, ECMAScript 6 doesn’t add a method to determine how
many code points a string has (the length property still returns the number
of code units in the string), but with the u flag, you can use regular expres-
sions to figure it out, as follows:

function codePointLength(text) {
 let result = text.match(/[\s\S]/gu);
 return result ? result.length : 0;
}

console.log(codePointLength("abc")); // 3
console.log(codePointLength("𠮷bc")); // 3

This example calls match() to check text for both whitespace and non-
whitespace characters (using [\s\S] to ensure the pattern matches newlines)
using a regular expression that is applied globally with Unicode enabled.
The result contains an array of matches when there’s at least one match, so
the array length is the number of code points in the string. In Unicode, the
strings "abc" and "𠮷bc" have three characters, so the array length is three.

Strings and Regular Expressions 19

n o t e Although this approach works, it’s not very fast, especially when applied to long
strings. You can use a string iterator (discussed in Chapter 8) as well. In general,
try to minimize counting code points whenever possible.

Determining Support for the u Flag

Because the u flag is a syntax change, attempting to use it in JavaScript
engines that aren’t compatible with ECMAScript 6 throws a syntax error.
The safest way to determine if the u flag is supported is with a function, like
this one:

function hasRegExpU() {
 try {
 var pattern = new RegExp(".", "u");
 return true;
 } catch (ex) {
 return false;
 }
}

This function uses the RegExp constructor to pass in the u flag as an
argument. This syntax is valid even in earlier JavaScript engines, but the
constructor will throw an error if u isn’t supported.

n o t e If your code still needs to work in earlier JavaScript engines, always use the RegExp
constructor when you’re using the u flag. This will prevent syntax errors and allow
you to optionally detect and use the u flag without aborting execution.

Other String Changes
JavaScript’s string manipulation abilities and utilities have always lagged
behind similar features in other languages. It was only in ECMAScript 5 that
a trim() method was added for strings, for example, and ECMAScript 6 con-
tinues extending JavaScript’s capacity to parse strings using new functionality.

Methods for Identifying Substrings
Developers have used the indexOf() method to identify strings inside other
strings since JavaScript was first introduced, and they’ve long asked for
easier ways to identify substrings. ECMAScript 6 includes the following
three methods, which are designed to do just that:

•	 The includes() method returns true if the given text is found anywhere
within the string. It returns false if not.

•	 The startsWith() method returns true if the given text is found at the
beginning of the string. It returns false if not.

•	 The endsWith() method returns true if the given text is found at the end
of the string. It returns false if not.

20 Chapter 2

Each method accepts two arguments: the text to search for and an
optional index from which to start the search. When the second argument
is provided, includes() and startsWith() start the match from that index, and
endsWith() starts the match from the length of the string minus the second
argument; when the second argument is omitted, includes() and startsWith()
search from the beginning of the string, and endsWith() starts from the end.
In effect, the second argument minimizes the amount of the string being
searched. Here are some examples showing these three methods in action:

let msg = "Hello world!";

console.log(msg.startsWith("Hello")); // true
console.log(msg.endsWith("!")); // true
console.log(msg.includes("o")); // true

console.log(msg.startsWith("o")); // false
console.log(msg.endsWith("world!")); // true
console.log(msg.includes("x")); // false

console.log(msg.startsWith("o", 4)); // true
console.log(msg.endsWith("o", 8)); // true
console.log(msg.includes("o", 8)); // false

The first three calls don’t include a second parameter, so they’ll search
the entire string if needed. The last three calls check only part of the string.
The call to msg.startsWith("o", 4) starts the match by looking at index 4
of the msg string, which is the o in Hello. The call to msg.endsWith("o", 8)
starts the match at index 4 as well, because the 8 argument is subtracted
from the string length (12). The call to msg.includes("o", 8) starts the
match from index 8, which is the r in world.

Although these three methods make identifying the existence of
substrings easier, each returns only a Boolean value. If you need to find
the actual position of one string within another, use the indexOf() or
lastIndexOf() methods.

n o t e The startsWith(), endsWith(), and includes() methods will throw an error if
you pass a regular expression instead of a string. In contrast, indexOf() and
lastIndexOf() convert a regular expression argument into a string and then
search for that string.

The repeat() Method
ECMAScript 6 also adds a repeat() method to strings, which accepts the
number of times to repeat the string as an argument. It returns a new string
containing the original string repeated the specified number of times. For
example:

console.log("x".repeat(3)); // "xxx"
console.log("hello".repeat(2)); // "hellohello"
console.log("abc".repeat(4)); // "abcabcabcabc"

Strings and Regular Expressions 21

This method is primarily a convenience function, and it can be espe-
cially useful when manipulating text. It’s particularly useful in code format-
ting utilities that need to create indentation levels, such as the following:

// indent using a specified number of spaces
let indent = " ".repeat(4),
 indentLevel = 0;

// whenever you increase the indent
let newIndent = indent.repeat(++indentLevel);

The first repeat() call creates a string of four spaces, and the indentLevel
variable keeps track of the indent level. Then, you can just call repeat() with
an incremented indentLevel to change the number of spaces.

ECMAScript 6 also makes some useful changes to regular expression
functionality that don’t fit into a particular category. The next section high-
lights a few of these changes.

Other Regular Expression Changes
Regular expressions are an important part of working with strings in
JavaScript, and like many parts of the language, they haven’t changed
much in recent versions. However, ECMAScript 6 makes several improve-
ments to regular expressions to complement the updates to strings.

The Regular Expression y Flag
ECMAScript 6 standardized the y flag after it was implemented in Firefox as
a proprietary extension to regular expressions. The y flag affects a regular
expression search’s sticky property, and it tells the search to start matching
characters in a string at the position specified by the regular expression’s
lastIndex property. If there is no match at that location, the regular expres-
sion stops matching. The following code shows how this works:

let text = "hello1 hello2 hello3",
 pattern = /hello\d\s?/,
 result = pattern.exec(text),
 globalPattern = /hello\d\s?/g,
 globalResult = globalPattern.exec(text),
 stickyPattern = /hello\d\s?/y,
 stickyResult = stickyPattern.exec(text);

console.log(result[0]); // "hello1 "
console.log(globalResult[0]); // "hello1 "
console.log(stickyResult[0]); // "hello1 "

pattern.lastIndex = 1;
globalPattern.lastIndex = 1;
stickyPattern.lastIndex = 1;

22 Chapter 2

result = pattern.exec(text);
globalResult = globalPattern.exec(text);
stickyResult = stickyPattern.exec(text);

console.log(result[0]); // "hello1 "
console.log(globalResult[0]); // "hello2 "
console.log(stickyResult[0]); // throws an error!

This example has three regular expressions. The expression in
pattern has no flags, the one in globalPattern uses the g flag, and the one
in stickyPattern uses the y flag. In the first trio of console.log() calls, all
three regular expressions should return "hello1 " with a space at the end.

Then, the lastIndex property is changed to 1 on all three patterns,
meaning that the regular expression should start matching from the sec-
ond character on all of them. The regular expression with no flags com-
pletely ignores the change to lastIndex and still matches "hello1 " without
incident. The regular expression with the g flag goes on to match "hello2 "
because it’s searching forward from the second character of the string
("e"). The sticky regular expression doesn’t match anything beginning at
the second character, so stickyResult is null.

The y flag saves the index of the next character after the last match in
lastIndex whenever an operation is performed. If an operation results in no
match, lastIndex is set back to 0. The global flag behaves the same way, as
demonstrated here:

let text = "hello1 hello2 hello3",
 pattern = /hello\d\s?/,
 result = pattern.exec(text),
 globalPattern = /hello\d\s?/g,
 globalResult = globalPattern.exec(text),
 stickyPattern = /hello\d\s?/y,
 stickyResult = stickyPattern.exec(text);

console.log(result[0]); // "hello1 "
console.log(globalResult[0]); // "hello1 "
console.log(stickyResult[0]); // "hello1 "

console.log(pattern.lastIndex); // 0
console.log(globalPattern.lastIndex); // 7
console.log(stickyPattern.lastIndex); // 7

result = pattern.exec(text);
globalResult = globalPattern.exec(text);
stickyResult = stickyPattern.exec(text);

console.log(result[0]); // "hello1 "
console.log(globalResult[0]); // "hello2 "
console.log(stickyResult[0]); // "hello2 "

console.log(pattern.lastIndex); // 0
console.log(globalPattern.lastIndex); // 14
console.log(stickyPattern.lastIndex); // 14

Strings and Regular Expressions 23

For both the stickyPattern and globalPattern variables, the value of
lastIndex changes to 7 after the first call to exec() and changes to 14 after
the second call.

You need to keep two more subtle details about the y flag in mind. Firstly,
the lastIndex property is honored only when you’re calling methods that exist
on the regular expression object, like the exec() and test() methods. Passing
the y flag to a string method, such as match(), will not result in the sticky
behavior.

Secondly, when sticky regular expressions use the ^ character to match
the start of a string, they only match from the start of the string (or the
start of the line in multiline mode). Although lastIndex is 0, the ^ makes a
sticky regular expression the same as a non-sticky one. If lastIndex doesn’t
correspond to the beginning of the string in single-line mode or the begin-
ning of a line in multiline mode, the sticky regular expression will never
match.

As with other regular expression flags, you can detect the presence of y
by using a property. In this case, you’d check the sticky property, as follows:

let pattern = /hello\d/y;

console.log(pattern.sticky); // true

The sticky property is set to true if the y flag is present and false if not.
The property is read-only based on the presence of the flag and cannot be
changed in code.

Similar to the u flag, the y flag is a syntax change, so it will cause a syn-
tax error in earlier JavaScript engines. You can use the following approach
to detect support:

function hasRegExpY() {
 try {
 var pattern = new RegExp(".", "y");
 return true;
 } catch (ex) {
 return false;
 }
}

Just like the u check, this code returns false if it’s unable to create a reg-
ular expression with the y flag. Also similar to u, if you need to use y in code
that runs in earlier JavaScript engines, be sure to use the RegExp constructor
when defining those regular expressions to avoid a syntax error.

Duplicating Regular Expressions
In ECMAScript 5, you can duplicate regular expressions by passing them
into the RegExp constructor, like this:

var re1 = /ab/i,
 re2 = new RegExp(re1);

24 Chapter 2

The re2 variable is just a copy of the re1 variable. But if you provide the
second argument to the RegExp constructor, which specifies the flags for the
regular expression, your code won’t work, as in this example:

var re1 = /ab/i,

 // throws an error in ES5, okay in ES6
 re2 = new RegExp(re1, "g");

If you execute this code in an ECMAScript 5 environment, you’ll get an
error stating that the second argument cannot be used when the first argu-
ment is a regular expression. ECMAScript 6 changed this behavior, allow-
ing the second argument, which overrides any flags present on the first
argument. For example:

let re1 = /ab/i,

 // throws an error in ES5, okay in ES6
 re2 = new RegExp(re1, "g");

console.log(re1.toString()); // "/ab/i"
console.log(re2.toString()); // "/ab/g"

console.log(re1.test("ab")); // true
console.log(re2.test("ab")); // true

console.log(re1.test("AB")); // true
console.log(re2.test("AB")); // false

In this code, re1 has the i (case-insensitive) flag, whereas re2 has only
the g (global) flag. The RegExp constructor duplicated the pattern from re1
and substituted the g flag for the i flag. Without the second argument, re2
would have the same flags as re1.

The flags Property
In addition to adding a new flag and changing how you can work with flags,
ECMAScript 6 added a property associated with them. In ECMAScript 5,
you could get the text of a regular expression by using the source property,
but to get the flag string, you’d have to parse the output of the toString()
method, as shown here:

function getFlags(re) {
 var text = re.toString();
 return text.substring(text.lastIndexOf("/") + 1, text.length);
}

// toString() is "/ab/g"
var re = /ab/g;

console.log(getFlags(re)); // "g"

Strings and Regular Expressions 25

This code converts a regular expression into a string and then returns
the characters found after the last /. Those characters are the flags.

ECMAScript 6 makes fetching flags easier by adding a flags property
to pair with the source property. Both properties are prototype accessor
properties with only a getter assigned, making them read-only. The flags
property makes inspecting regular expressions easier for debugging and
inheritance purposes.

A late addition to ECMAScript 6, the flags property returns the string
representation of any flags applied to a regular expression. For example:

let re = /ab/g;

console.log(re.source); // "ab"
console.log(re.flags); // "g"

This code fetches all flags on re and prints them to the console with
far fewer lines of code than the toString() technique can. Using source and
flags together allows you to extract the pieces of the regular expression that
you need without parsing the regular expression string directly.

The changes to strings and regular expressions discussed in this chap-
ter so far definitely allow you to do more with them, but ECMAScript 6
improves your power over strings in a more significant way. It introduces a
type of literal that makes strings more flexible.

Template Literals
To allow developers to solve more complex problems, ECMAScript 6’s
template literals provide syntax for creating domain-specific languages
(DSLs) for working with content in a safer way than the solutions available
in ECMAScript 5 and earlier versions. A DSL is a programming language
designed for a specific, narrow purpose, as opposed to general-purpose
languages like JavaScript. The ECMAScript wiki (http://wiki.ecmascript.org/
doku.php?id=harmony:quasis/) offers the following description on the tem-
plate literal strawman:

This scheme extends ECMAScript syntax with syntactic sugar to
allow libraries to provide DSLs that easily produce, query, and
manipulate content from other languages that are immune or
resistant to injection attacks such as XSS, SQL Injection, etc.

But in reality, template literals are ECMAScript 6’s answer to the follow-
ing features that JavaScript lacked in ECMAScript 5 and in earlier versions:

Multiline strings A formal concept of multiline strings

Basic string formatting The ability to substitute parts of the string for
values contained in variables

HTML escaping The ability to transform a string so it is safe to insert
into HTML

26 Chapter 2

Rather than trying to add more functionality to JavaScript’s already
existing strings, template literals represent an entirely new approach to solv-
ing these problems.

Basic Syntax
At their simplest, template literals act like regular strings delimited by
backticks (`) instead of double or single quotes. For example, consider
the following:

let message = `Hello world!`;

console.log(message); // "Hello world!"
console.log(typeof message); // "string"
console.log(message.length); // 12

This code demonstrates that the variable message contains a normal
JavaScript string. The template literal syntax is used to create the string
value, which is then assigned to the message variable.

If you want to use a backtick in a string, just escape it with a backslash
(\), as in this version of the message variable:

let message = `\`Hello\` world!`;

console.log(message); // "`Hello` world!"
console.log(typeof message); // "string"
console.log(message.length); // 14

There’s no need to escape either double or single quotes inside tem-
plate literals.

Multiline Strings
JavaScript developers have wanted a way to create multiline strings since the
first version of the language. But when you’re using double or single quotes,
strings must be completely contained on a single line.

Pre-ECMAScript 6 Workarounds

Thanks to a long-standing syntax bug, JavaScript does have a workaround
for creating multiline strings. You can create multiline strings by using a
backslash (\) before a newline. Here’s an example:

var message = "Multiline \
string";

console.log(message); // "Multiline string"

The message string has no newlines present when printed to the console
because the backslash is treated as a continuation rather than a newline.

Strings and Regular Expressions 27

To show a newline in output, you’d need to manually include it:

var message = "Multiline \n\
string";

console.log(message); // "Multiline
 // string"

This code should print the contents of message on two separate lines in
all major JavaScript engines; however, the behavior is defined as a bug, and
many developers recommend avoiding it.

Other pre-ECMAScript 6 attempts to create multiline strings usually
relied on arrays or string concatenation, such as the following:

var message = [
 "Multiline ",
 "string"
].join("\n");

let message = "Multiline \n" +
 "string";

All the ways developers worked around JavaScript’s lack of multiline
strings weren’t very practical or convenient.

Multiline Strings the Easy Way

ECMAScript 6’s template literals make multiline strings easy because
there’s no special syntax. Just include a newline where you want, and it
appears in the result, like so:

let message = `Multiline
string`;

console.log(message); // "Multiline
 // string"
console.log(message.length); // 16

All whitespace inside the backticks is part of the string, so be careful
with indentation. For example:

let message = `Multiline
 string`;

console.log(message); // "Multiline
 // string"
console.log(message.length); // 31

In this code, all whitespace before the second line of the template lit-
eral is considered part of the string.

28 Chapter 2

If making the text align with proper indentation is important to you,
consider leaving the first line of a multiline template literal empty and then
indenting after that, as follows:

let html = `
<div>
 <h1>Title</h1>
</div>`.trim();

This code begins the template literal on the first line but doesn’t have
any text until the second line. The HTML tags are indented to look correct
and then the trim() method is called to remove the initial empty line.

If you prefer, you can also use \n in a template literal to indicate where
a newline should be inserted:

let message = `Multiline\nstring`;

console.log(message); // "Multiline
 // string"
console.log(message.length); // 16

Making Substitutions
At this point, template literals may look like fancier versions of normal
JavaScript strings. The real difference between the two is in template literal
substitutions. Substitutions allow you to embed any valid JavaScript expres-
sion inside a template literal and output the result as part of the string.

Substitutions are delimited by an opening ${ and a closing } that can
have any JavaScript expression inside. The simplest substitutions let you
embed local variables directly into a resulting string, like this:

let name = "Nicholas",
 message = `Hello, ${name}.`;

console.log(message); // "Hello, Nicholas."

The substitution ${name} accesses the local variable name and inserts it
into the message string. The message variable then holds the result of the sub-
stitution immediately.

n o t e A template literal can access any variable accessible in the scope in which it is defined.
Attempting to use an undeclared variable in a template literal throws an error in
strict and non-strict modes.

Strings and Regular Expressions 29

Because all substitutions are JavaScript expressions, you can substitute
more than just simple variable names. You can easily embed calculations,
function calls, and more. For example:

let count = 10,
 price = 0.25,
 message = `${count} items cost $${(count * price).toFixed(2)}.`;

console.log(message); // "10 items cost $2.50."

This code performs a calculation as part of the template literal. The
variables count and price are multiplied together to produce a result and
then are formatted to two decimal places using .toFixed(). The dollar sign
before the second substitution is output as is because it’s not followed by an
opening curly brace.

Template literals are also JavaScript expressions, which means you
can place a template literal inside another template literal, as in this
example:

let name = "Nicholas",
 message = `Hello, ${
 `my name is ${ name }`
 }.`;

console.log(message); // "Hello, my name is Nicholas."

This code nests a second template literal inside the first. After the first
${ delimiter, another template literal begins. The second ${ indicates the
beginning of an embedded expression inside the inner template literal.
That expression is the variable name, which is inserted into the result.

Tagged Templates
You’ve seen how template literals can create multiline strings and insert
values into strings without concatenation. But the real power of template
literals comes from tagged templates. A template tag performs a transforma-
tion on the template literal and returns the final string value. This tag is
specified at the start of the template, just before the first ` character, as
shown here:

let message = tag`Hello world`;

In this example, tag is the template tag to apply to the `Hello world`
template literal.

30 Chapter 2

Defining Tags

A tag is simply a function that is called with the processed template literal
data. The tag receives data about the template literal as individual pieces
and must combine the pieces to create the result. The first argument is an
array containing the literal strings as interpreted by JavaScript. Each sub-
sequent argument is the interpreted value of each substitution.

Tag functions are typically defined using rest arguments to make
handling the data easier than using individual named arguments, as
follows:

function tag(literals, ...substitutions) {
 // return a string
}

To better understand what gets passed to tags, consider the following:

let count = 10,
 price = 0.25,
 message = passthru`${count} items cost $${(count * price).toFixed(2)}.`;

If you had a function called passthru(), that function would receive
three arguments when used as a template literal tag. The first argument
would be a literals array, containing the following elements:

•	 The empty string before the first substitution ("")

•	 The string after the first substitution and before the second
(" items cost $")

•	 The string after the second substitution (".")

The next argument would be 10, which is the interpreted value for
the count variable. This value becomes the first element in a substitutions
array. The third argument would be "2.50", which is the interpreted value
for (count * price).toFixed(2) and the second element in the substitutions
array.

Note that the first item in literals is an empty string. This ensures that
literals[0] is always the start of the string, just like literals[literals.length
- 1] is always the end of the string. The number of items in the substitutions
array is always one fewer than the number of items in the literals array,
which means the expression substitutions.length === literals.length - 1
is always true.

Using this pattern, the literals and substitutions arrays can be inter-
woven to create a resulting string. The first item in literals comes first, the
first item in substitutions is next, and so on until the string is complete. As
an example, you can mimic the default behavior of a template literal by
alternating values from these two arrays, as in the following code.

Strings and Regular Expressions 31

function passthru(literals, ...substitutions) {
 let result = "";

 // run the loop only for the substitution count
 for (let i = 0; i < substitutions.length; i++) {
 result += literals[i];
 result += substitutions[i];
 }

 // add the last literal
 result += literals[literals.length - 1];

 return result;
}

let count = 10,
 price = 0.25,
 message = passthru`${count} items cost $${(count * price).toFixed(2)}.`;

console.log(message); // "10 items cost $2.50."

This example defines a passthru tag that performs the same trans-
formation as the default template literal behavior. The only trick is to
use substitutions.length for the loop rather than literals.length to avoid
accidentally going past the end of the substitutions array. This trick works
because the relationship between literals and substitutions is well-defined
in ECMAScript 6.

n o t e The values contained in substitutions are not necessarily strings. If an expression
evaluates to a number, as in the previous example, the numeric value is passed in.
Determining how such values should output in the result is part of the tag’s job.

Using Raw Values in Template Literals

Template tags also have access to raw string information, which primarily
means access to character escapes before they’re transformed into their
character equivalents. The simplest way to work with raw string values is to
use the built-in String.raw() tag. For example:

let message1 = `Multiline\nstring`,
 message2 = String.raw`Multiline\nstring`;

console.log(message1); // "Multiline
 // string"
console.log(message2); // "Multiline\\nstring"

In this code, the \n in message1 is interpreted as a newline, and the \n
in message2 is returned in its raw form of "\\n" (the slash and n characters).
Retrieving the raw string information like this allows for more complex pro-
cessing when necessary.

32 Chapter 2

The raw string information is also passed into template tags. The
first argument in a tag function is an array with an extra property called
raw. The raw property is an array containing the raw equivalent of each lit-
eral value. For example, the value in literals[0] always has an equivalent
literals.raw[0] that contains the raw string information. Knowing that, you
can mimic String.raw() using the following code:

function raw(literals, ...substitutions) {
 let result = "";

 // run the loop only for the substitution count
 for (let i = 0; i < substitutions.length; i++) {
 // use raw values instead
 result += literals.raw[i];
 result += substitutions[i];
 }

 // add the last literal
 result += literals.raw[literals.length - 1];

 return result;
}

let message = raw`Multiline\nstring`;

console.log(message); // "Multiline\\nstring"
console.log(message.length); // 17

This code uses literals.raw instead of literals to output the string
result. That means any character escapes, including Unicode code point
escapes, will be returned in their raw form. Raw strings are helpful when
you want to output a string containing code that includes character escape
sequences. For instance, if you want to generate documentation about some
code, you might want to output the actual code as it appears.

Summary
Full Unicode support in ECMAScript 6 allows JavaScript to handle UTF-16
characters in logical ways. The ability to transfer between code point and
character via codePointAt() and String.fromCodePoint() is an important step
for string manipulation. The addition of the regular expression u flag makes
it possible to operate on code points instead of 16-bit characters, and the
normalize() method allows for more appropriate string comparisons.

ECMAScript 6 also added new methods for working with strings, allow-
ing you to more easily identify a substring regardless of its position in the
parent string. More functionality was added to regular expressions as well.

Template literals are an important addition to ECMAScript 6 that
allows you to create domain-specific languages (DSLs) to make creating

Strings and Regular Expressions 33

strings easier. The ability to embed variables directly into template literals
means that developers have a safer tool than string concatenation for com-
posing long strings with variables.

Built-in support for multiline strings also makes template literals a use-
ful upgrade over normal JavaScript strings, which have never had this abil-
ity. Although newlines are allowed directly inside the template literal, you
can still use \n and other character escape sequences.

Template tags are the most important part of the template literal fea-
ture for creating DSLs. Tags are functions that receive the pieces of the
template literal as arguments. You can then use that data to return an
appropriate string value. The data provided includes literals, their raw
equivalents, and any substitution values. These pieces of information can
help you determine the correct output for the tag.

3
F u n c t i o n s

Functions are an important part of any
programming language, and prior to

ECMAScript 6, JavaScript functions hadn’t
changed much since the language was created.

This left a backlog of problems and nuanced behavior
that made making mistakes easy and often required
more code just to produce very basic behaviors.

ECMAScript 6 functions make a big leap forward, taking into account
years of complaints and requests from JavaScript developers. The result
is a number of incremental improvements that enhance ECMAScript 5
functions and make programming in JavaScript less error prone and more
flexible.

36 Chapter 3

Functions with Default Parameter Values
Functions in JavaScript are unique in that they allow any number of param-
eters to be passed regardless of the number of parameters declared in the
function definition. This allows you to define functions that can handle
different numbers of parameters, often by just filling in default values when
parameters aren’t provided. This section covers how default parameters work
in and prior to ECMAScript 6, along with some important information on
the arguments object, using expressions as parameters, and another TDZ.

Simulating Default Parameter Values in ECMAScript 5
In ECMAScript 5 and earlier, you would likely use the following pattern to
create a function with default parameter values:

function makeRequest(url, timeout, callback) {

 timeout = timeout || 2000;
 callback = callback || function() {};

 // the rest of the function

}

In this example, timeout and callback are actually optional because
they are given a default value if a parameter isn’t provided. The logical
OR operator (||) always returns the second operand when the first is falsy.
Because named function parameters that are not explicitly provided are set
to undefined, the logical OR operator is frequently used to provide default
values for missing parameters. However, a flaw exists with this approach in
that a valid value for timeout might actually be 0, but this would replace it
with 2000 because 0 is falsy.

In that case, a safer alternative is to check the type of the argument
using typeof, as in this example:

function makeRequest(url, timeout, callback) {

 timeout = (typeof timeout !== "undefined") ? timeout : 2000;
 callback = (typeof callback !== "undefined") ? callback : function() {};

 // the rest of the function

}

Although this approach is safer, it still requires a lot of extra code to
execute a very basic operation. This approach represents a common pat-
tern, and popular JavaScript libraries are filled with similar patterns.

Functions 37

Default Parameter Values in ECMAScript 6
ECMAScript 6 makes it easier to provide default values for parameters by
supplying initializations that are used when the parameter isn’t formally
passed. For example:

function makeRequest(url, timeout = 2000, callback = function() {}) {

 // the rest of the function

}

This function expects only the first parameter to always be passed. The
other two parameters have default values, which makes the body of the
function much smaller because you don’t need to add any code to check for
a missing value.

When makeRequest() is called with all three parameters, the defaults are
not used. For example:

// uses default timeout and callback
makeRequest("/foo");

// uses default callback
makeRequest("/foo", 500);

// doesn't use defaults
makeRequest("/foo", 500, function(body) {
 doSomething(body);
});

ECMAScript 6 considers url to be required, which is why "/foo" is passed
in all three calls to makeRequest(). The two parameters with a default value are
considered optional.

It’s possible to specify default values for any arguments, including those
that appear before arguments without default values in the function decla-
ration. For example, this is fine:

function makeRequest(url, timeout = 2000, callback) {

 // the rest of the function

}

In this case, the default value for timeout will be used only if there is no
second argument passed in or if the second argument is explicitly passed in
as undefined, as in this example:

// uses default timeout
makeRequest("/foo", undefined, function(body) {
 doSomething(body);
});

38 Chapter 3

// uses default timeout
makeRequest("/foo");

// doesn't use default timeout
makeRequest("/foo", null, function(body) {
 doSomething(body);
});

In the case of default parameter values, a value of null is considered
valid, meaning that in the third call to makeRequest(), the default value for
timeout will not be used.

How Default Parameter Values Affect the arguments Object
Keep in mind that the arguments object’s behavior is different when default
parameter values are present. In ECMAScript 5 non-strict mode, the arguments
object reflects changes in the named parameters of a function. Here’s some
code that illustrates how this works:

function mixArgs(first, second) {
 console.log(first === arguments[0]);
 console.log(second === arguments[1]);
 first = "c";
 second = "d";
 console.log(first === arguments[0]);
 console.log(second === arguments[1]);
}

mixArgs("a", "b");

This code outputs the following:

true
true
true
true

The arguments object is always updated in non-strict mode to reflect
changes in the named parameters. Thus, when first and second are assigned
new values, arguments[0] and arguments[1] are updated accordingly, making all
of the === comparisons resolve to true.

However, ECMAScript 5’s strict mode eliminates this confusing aspect
of the arguments object. In strict mode, the arguments object does not reflect
changes to the named parameters. Here’s the mixArgs() function again, but
in strict mode:

function mixArgs(first, second) {
 "use strict";

 console.log(first === arguments[0]);
 console.log(second === arguments[1]);
 first = "c";

Functions 39

 second = "d"
 console.log(first === arguments[0]);
 console.log(second === arguments[1]);
}

mixArgs("a", "b");

The call to mixArgs() outputs the following:

true
true
false
false

This time, changing first and second doesn’t affect arguments, so the out-
put behaves as you’d normally expect it to.

The arguments object in a function using ECMAScript 6 default param-
eter values will always behave in the same manner as ECMAScript 5 strict
mode regardless of whether the function is explicitly running in strict mode.
The presence of default parameter values triggers the arguments object to
remain detached from the named parameters. This is a subtle but impor-
tant detail because of how you can use the arguments object. Consider the
following:

// not in strict mode
function mixArgs(first, second = "b") {
 console.log(arguments.length);
 console.log(first === arguments[0]);
 console.log(second === arguments[1]);
 first = "c";
 second = "d"
 console.log(first === arguments[0]);
 console.log(second === arguments[1]);
}

mixArgs("a");

This code outputs the following:

1
true
false
false
false

In this example, arguments.length is 1 because only one argument was
passed to mixArgs(). That also means arguments[1] is undefined, which is the
expected behavior when only one argument is passed to a function. That
means first is equal to arguments[0] as well. Changing first and second has
no effect on arguments. This behavior occurs in non-strict and strict modes,
so you can rely on arguments to always reflect the initial call state.

40 Chapter 3

Default Parameter Expressions
Perhaps the most interesting feature of default parameter values is that the
default value need not be a primitive value. You can, for example, execute a
function to retrieve the default parameter value, like this:

function getValue() {
 return 5;
}

function add(first, second = getValue()) {
 return first + second;
}

console.log(add(1, 1)); // 2
console.log(add(1)); // 6

Here, if the last argument isn’t provided, the function getValue() is called
to retrieve the correct default value. Keep in mind that getValue() is called
only when add() is called without a second parameter, not when the function
declaration is first parsed. That means if getValue() were written differently,
it could potentially return a different value. For instance:

let value = 5;

function getValue() {
 return value++;
}

function add(first, second = getValue()) {
 return first + second;
}

console.log(add(1, 1)); // 2
console.log(add(1)); // 6
console.log(add(1)); // 7

In this example, value begins as 5 and increments each time getValue()
is called. The first call to add(1) returns 6, and the second call to add(1)
returns 7 because value was incremented. Because the default value for
second is evaluated only when the function is called, changes to that value
can be made at any time.

W a r n i n g Be careful when using function calls as default parameter values. If you forget the
parentheses, such as second = getValue in this example, you are passing a reference
to the function rather than the result of the function call.

Functions 41

This behavior introduces another useful capability. You can use a previ-
ous parameter as the default for a later parameter. Here’s an example:

function add(first, second = first) {
 return first + second;
}

console.log(add(1, 1)); // 2
console.log(add(1)); // 2

In this code, the parameter second is given a default value of first,
meaning that passing in just one argument leaves both arguments with
the same value. So add(1, 1) returns 2 just as add(1) returns 2. Taking this
approach a step further, you can pass first into a function to get the value
for second as follows:

function getValue(value) {
 return value + 5;
}

function add(first, second = getValue(first)) {
 return first + second;
}

console.log(add(1, 1)); // 2
console.log(add(1)); // 7

This example sets second equal to the value returned by getValue(first),
so although add(1, 1) still returns 2, add(1) returns 7 (1 + 6).

The ability to reference parameters from default parameter assign-
ments works only for previous arguments, so earlier arguments don’t have
access to later arguments. For example:

function add(first = second, second) {
 return first + second;
}

console.log(add(1, 1)); // 2
console.log(add(undefined, 1)); // throws an error

The call to add(undefined, 1) throws an error because second is defined
after first and is therefore unavailable as a default value. To understand
why that happens, it’s important to revisit TDZs.

Default Parameter TDZ
Chapter 1 introduced the TDZ as it relates to let and const, and default
parameter values also have a TDZ where parameters cannot be accessed.
Similar to a let declaration, each parameter creates a new identifier binding

42 Chapter 3

that can’t be referenced before initialization without throwing an error.
Parameter initialization happens when the function is called, either by pass-
ing a value for the parameter or by using the default parameter value.

To explore the default parameter value TDZ, reconsider this example
from page 41:

function getValue(value) {
 return value + 5;
}

function add(first, second = getValue(first)) {
 return first + second;
}

console.log(add(1, 1)); // 2
console.log(add(1)); // 7

The calls to add(1, 1) and add(1) effectively execute the following code
to create the first and second parameter values:

// JavaScript representation of call to add(1, 1)
let first = 1;
let second = 1;

// JavaScript representation of call to add(1)
let first = 1;
let second = getValue(first);

When the function add() is first executed, the bindings first and second
are added to a parameter-specific TDZ (similar to how let behaves). So
although second can be initialized with the value of first because first is
always initialized at that time, the reverse is not true. Now, consider this
rewritten add() function:

function add(first = second, second) {
 return first + second;
}

console.log(add(1, 1)); // 2
console.log(add(undefined, 1)); // throws an error

The calls to add(1, 1) and add(undefined, 1) in this example now map to
the following code behind the scenes:

// JavaScript representation of call to add(1, 1)
let first = 1;
let second = 1;

// JavaScript representation of call to add(undefined, 1)
let first = second;
let second = 1;

Functions 43

In this example, the call to add(undefined, 1) throws an error because
second hasn’t yet been initialized when first is initialized. At that point, second
is in the TDZ and therefore any references to second throw an error. This
example mirrors the behavior of let bindings discussed in Chapter 1.

n o t e Function parameters have their own scope and their own TDZ that is separate from
the function body scope. That means the default value of a parameter cannot access
any variables declared inside the function body.

Working with Unnamed Parameters
So far, the examples in this chapter have only covered parameters that have
been named in the function definition. However, JavaScript functions don’t
limit the number of parameters that can be passed to the number of named
parameters defined. You can always pass fewer or more parameters than
formally specified. Default parameter values make it clear when a function
can accept fewer parameters, and ECMAScript 6 makes the problem of
passing more parameters than defined better as well.

Unnamed Parameters in ECMAScript 5
Early on, JavaScript provided the arguments object as a way to inspect all
function parameters that are passed without necessarily defining each
parameter. Although inspecting arguments works fine in most cases, this
object can be a bit cumbersome to work with. For example, examine this
code, which inspects the arguments object:

function pick(object) {
 let result = Object.create(null);

 // start at the second parameter
 for (let i = 1, len = arguments.length; i < len; i++) {
 result[arguments[i]] = object[arguments[i]];
 }

 return result;
}

let book = {
 title: "Understanding ECMAScript 6",
 author: "Nicholas C. Zakas",
 year: 2016
};

let bookData = pick(book, "author", "year");

console.log(bookData.author); // "Nicholas C. Zakas"
console.log(bookData.year); // 2016

44 Chapter 3

This function mimics the pick() method from the Underscore.js library,
which returns a copy of a given object with some specified subset of the
original object’s properties. This example defines only one argument and
expects the first argument to be the object from which to copy proper-
ties. Every other argument passed is the name of a property that should be
copied on the result.

You should note a couple of things about this pick() function. First,
it’s not at all obvious that the function can handle more than one param-
eter. You could define several more parameters, but you would always fall
short of indicating that this function can take any number of parameters.
Second, because the first parameter is named and used directly, when you
look for the properties to copy, you have to start in the arguments object at
index 1 instead of index 0. Remembering to use the appropriate indices
with arguments isn’t necessarily difficult, but it’s one more detail to keep
track of.

ECMAScript 6 introduces rest parameters to help with these issues.

Rest Parameters
A rest parameter is indicated by three dots (...) preceding a named param-
eter. That named parameter becomes an Array containing the rest of the
parameters passed to the function, which is where the name rest parameters
originates. For example, pick() can be rewritten using rest parameters,
like this:

function pick(object, ...keys) {
 let result = Object.create(null);

 for (let i = 0, len = keys.length; i < len; i++) {
 result[keys[i]] = object[keys[i]];
 }

 return result;
}

In this version of the function, keys is a rest parameter that contains all
parameters passed after object (unlike arguments, which contains all param-
eters including the first one). That means you can iterate over keys from
beginning to end without worry. As a bonus, you can tell by looking at the
function that it’s capable of handling any number of parameters.

n o t e Rest parameters don’t affect a function’s length property, which indicates the number
of named parameters for the function. The value of length for pick() in this example
is 1 because only object counts toward this value.

Functions 45

Rest Parameter Restrictions

Rest parameters have two restrictions. The first restriction is that there
can be only one rest parameter, and the rest parameter must be last. For
example, this code won’t work:

// Syntax error: Can't have a named parameter after rest parameters
function pick(object, ...keys, last) {
 let result = Object.create(null);

 for (let i = 0, len = keys.length; i < len; i++) {
 result[keys[i]] = object[keys[i]];
 }

 return result;
}

Here, the parameter last follows the rest parameter keys, which would
cause a syntax error.

The second restriction is that rest parameters cannot be used in
an object literal setter. That means this code would also cause a syntax
error:

let object = {

 // Syntax error: Can't use rest param in setter
 set name(...value) {
 // do something
 }
};

This restriction exists because object literal setters are restricted to a
single argument. Rest parameters are, by definition, an infinite number of
arguments, so they’re not allowed in this context.

How Rest Parameters Affect the arguments Object

Rest parameters were designed to replace arguments in JavaScript. Originally,
ECMAScript 4 eliminated arguments and added rest parameters to allow an
unlimited number of arguments to be passed to functions. ECMAScript 4
was never standardized, but this idea was retained and reintroduced in
ECMAScript 6, despite arguments not being removed from the language.

The arguments object works together with rest parameters by reflecting
the arguments that were passed to the function when called, as illustrated
in the following example.

46 Chapter 3

function checkArgs(...args) {
 console.log(args.length);
 console.log(arguments.length);
 console.log(args[0], arguments[0]);
 console.log(args[1], arguments[1]);
}

checkArgs("a", "b");

The call to checkArgs() outputs the following:

2
2
a a
b b

The arguments object always correctly reflects the parameters that were
passed into a function regardless of rest parameter usage.

Increased Capabilities of the Function Constructor
The Function constructor is an infrequently used part of JavaScript that
allows you to dynamically create a new function. The arguments to the con-
structor are the parameters for the function and the function body, all as
strings. Here’s an example:

var add = new Function("first", "second", "return first + second");

console.log(add(1, 1)); // 2

ECMAScript 6 augments the capabilities of the Function constructor to
allow default parameters and rest parameters. You need only add an equal
sign and a value to the parameter names, as follows:

var add = new Function("first", "second = first",
 "return first + second");

console.log(add(1, 1)); // 2
console.log(add(1)); // 2

In this example, the parameter second is assigned the value of first
when only one parameter is passed. The syntax is the same as for function
declarations that don’t use Function.

For rest parameters, just add the ... before the last parameter, like this:

var pickFirst = new Function("...args", "return args[0]");

console.log(pickFirst(1, 2)); // 1

Functions 47

This code creates a function that uses only a single rest parameter and
returns the first argument that was passed in. The addition of default and
rest parameters ensures that Function has the same capabilities as the declar-
ative form of creating functions.

The Spread Operator
Closely related to rest parameters is the spread operator. Whereas rest
parameters allow you to specify that multiple independent arguments
should be combined into an array, the spread operator allows you to specify
an array that should be split and passed in as separate arguments to a func-
tion. Consider the built-in Math.max() method, which accepts any number of
arguments and returns the one with the highest value. Here’s a simple use
case for this method:

let value1 = 25,
 value2 = 50;

console.log(Math.max(value1, value2)); // 50

When you’re working with just two values, as in this example, Math.max()
is very easy to use. The two values are passed in, and the higher value is
returned. But what if you’ve been tracking values in an array, and now you
want to find the highest value? The Math.max() method doesn’t allow you
to pass in an array, so in ECMAScript 5 and earlier, you’d be stuck either
searching the array manually or using apply() as follows:

let values = [25, 50, 75, 100]

console.log(Math.max.apply(Math, values)); // 100

This solution works, but using apply() in this manner is a bit confusing.
It actually seems to obfuscate the true meaning of the code with additional
syntax.

The ECMAScript 6 spread operator makes this case very simple. Instead
of calling apply(), you can pass the array to Math.max() directly and prefix
it with the same ... pattern you use with rest parameters. The JavaScript
engine then splits the array into individual arguments and passes them in,
like this:

let values = [25, 50, 75, 100]

// equivalent to
// console.log(Math.max(25, 50, 75, 100));
console.log(Math.max(...values)); // 100

Now the call to Math.max() looks a bit more conventional and avoids the
complexity of specifying a this binding (the first argument to Math.max.apply()
in the previous example) for a simple mathematical operation.

48 Chapter 3

You can mix and match the spread operator with other arguments as
well. Suppose you want the smallest number returned from Math.max() to
be 0 (just in case negative numbers sneak into the array). You can pass
that argument separately and still use the spread operator for the other
arguments, as follows:

let values = [-25, -50, -75, -100]

console.log(Math.max(...values, 0)); // 0

In this example, the last argument passed to Math.max() is 0, which
comes after the other arguments are passed in using the spread operator.

The spread operator for argument passing makes using arrays for func-
tion arguments much easier. You’ll likely find it to be a suitable replacement
for the apply() method in most circumstances.

In addition to the uses you’ve seen for default and rest parameters
so far, in ECMAScript 6, you can also apply both parameter types to
JavaScript’s Function constructor.

The name Property
Identifying functions can be challenging in JavaScript given the various
ways you can define a function. Additionally, the prevalence of anonymous
function expressions makes debugging a bit more difficult, often result-
ing in stack traces that are hard to read and decipher. For these reasons,
ECMAScript 6 adds the name property to all functions.

Choosing Appropriate Names
All functions in an ECMAScript 6 program will have an appropriate value
for their name property. To see this in action, look at the following example,
which shows a function and function expression, and prints the name proper-
ties for both:

function doSomething() {
 // empty
}

var doAnotherThing = function() {
 // empty
};

console.log(doSomething.name); // "doSomething"
console.log(doAnotherThing.name); // "doAnotherThing"

In this code, doSomething() has a name property equal to "doSomething"
because it’s a function declaration. The anonymous function expression
doAnotherThing() has a name of "doAnotherThing" because that’s the name of
the variable to which it is assigned.

Functions 49

Special Cases of the name Property
Although appropriate names for function declarations and function expres-
sions are easy to find, ECMAScript 6 goes further to ensure that all func-
tions have appropriate names. To illustrate this, consider the following
program:

var doSomething = function doSomethingElse() {
 // empty
};

var person = {
 get firstName() {
 return "Nicholas"
 },
 sayName: function() {
 console.log(this.name);
 }
}

console.log(doSomething.name); // "doSomethingElse"
console.log(person.sayName.name); // "sayName"
console.log(person.firstName.name); // "get firstName"

In this example, doSomething.name is "doSomethingElse" because the func-
tion expression has a name, and that name takes priority over the variable
to which the function was assigned. The name property of person.sayName()
is "sayName" because the value was interpreted from the object literal.
Similarly, person.firstName is actually a getter function, so its name is
"get firstName" to indicate this difference. Setter functions are prefixed
with "set" as well.

There are a couple of other special cases for function names, too.
Functions created using bind() will prefix their names with "bound" and a
space, and functions created using the Function constructor use the name
"anonymous", as in this example:

var doSomething = function() {
 // empty
};

console.log(doSomething.bind().name); // "bound doSomething"

console.log((new Function()).name); // "anonymous"

The name of a bound function will always be the name of the function
being bound prefixed with the string "bound " so the bound version of
doSomething() is "bound doSomething".

Keep in mind that the value of name for any function does not necessar-
ily refer to a variable of the same name. The name property is meant to be
informative, to help with debugging, so there’s no way to use the value of
name to get a reference to the function.

50 Chapter 3

Clarifying the Dual Purpose of Functions
In ECMAScript 5 and earlier, functions serve the dual purpose of being
callable with or without new. When used with new, the this value inside a
function is a new object and that new object is returned, as illustrated in
this example:

function Person(name) {
 this.name = name;
}

var person = new Person("Nicholas");
var notAPerson = Person("Nicholas");

console.log(person); // "[Object object]"
console.log(notAPerson); // "undefined"

When creating notAPerson, calling Person() without new results in undefined
(and sets a name property on the global object in non-strict mode). The capi-
talization of Person is the only real indicator that the function is meant to be
called using new, as is common in JavaScript programs. This confusion over
the dual roles of functions led to some changes in ECMAScript 6.

JavaScript has two different internal-only methods for functions: [[Call]]
and [[Construct]]. When a function is called without new, the [[Call]] method
is executed, which executes the body of the function as it appears in the code.
When a function is called with new, that’s when the [[Construct]] method
is called. The [[Construct]] method is responsible for creating a new object,
called the instance, and then executing the function body with this set to the
instance. Functions that have a [[Construct]] method are called constructors.

Keep in mind that not all functions have [[Construct]], and therefore
not all functions can be called with new. Arrow functions, discussed in
“Arrow Functions” on page 54, do not have a [[Construct]] method.

Determining How a Function Was Called in ECMAScript 5
The most popular way to determine whether a function was called with
new (and hence, as a constructor) in ECMAScript 5 is to use instanceof, for
example:

function Person(name) {
 if (this instanceof Person) {
 this.name = name; // using new
 } else {
 throw new Error("You must use new with Person.")
 }
}

var person = new Person("Nicholas");
var notAPerson = Person("Nicholas"); // throws an error

Functions 51

Here, the this value is checked to see whether it’s an instance of the
constructor, and if it is, execution continues as normal. If this isn’t an
instance of Person, an error is thrown. This approach works because the
[[Construct]] method creates a new instance of Person and assigns it to this.
Unfortunately, this approach is not completely reliable because this can be
an instance of Person without using new, as in this example:

function Person(name) {
 if (this instanceof Person) {
 this.name = name;
 } else {
 throw new Error("You must use new with Person.")
 }
}

var person = new Person("Nicholas");
var notAPerson = Person.call(person, "Michael"); // works!

The call to Person.call() passes the person variable as the first argu-
ment, which means this is set to person inside the Person function. To the
function, there’s no way to distinguish being called with Person.call()
(or Person.apply()) with a Person instance from being called with new.

The new.target Metaproperty
To solve the problem of identifying function calls using new, ECMAScript 6
introduces the new.target metaproperty. A metaproperty is a property of a
nonobject that provides additional information related to its target (such
as new). When a function’s [[Construct]] method is called, new.target is filled
with the target of the new operator. That target is typically the constructor of
the newly created object instance that will become this inside the function
body. If [[Call]] is executed, new.target is undefined.

This new metaproperty allows you to safely detect if a function is called
with new by checking whether new.target is defined as follows:

function Person(name) {
 if (typeof new.target !== "undefined") {
 this.name = name;
 } else {
 throw new Error("You must use new with Person.")
 }
}

var person = new Person("Nicholas");
var notAPerson = Person.call(person, "Michael"); // error!

By using new.target instead of this instanceof Person, the Person construc-
tor is now correctly throwing an error when used without new.

52 Chapter 3

You can also check that new.target was called with a specific constructor.
For instance, look at this example:

function Person(name) {
 if (typeof new.target === Person) {
 this.name = name;
 } else {
 throw new Error("You must use new with Person.")
 }
}

function AnotherPerson(name) {
 Person.call(this, name);
}

var person = new Person("Nicholas");
var anotherPerson = new AnotherPerson("Nicholas"); // error!

In this code, new.target must be Person in order to work correctly.
When new AnotherPerson("Nicholas") is called, the subsequent call to
Person.call(this, name) will throw an error because new.target is undefined
inside of the Person constructor (it was called without new).

W a r n i n g Using new.target outside a function is a syntax error.

By adding new.target, ECMAScript 6 helped to clarify some ambiguity
concerning function calls. Following along this theme, ECMAScript 6 also
addresses another previously ambiguous part of the language: declaring
functions inside blocks.

Block-Level Functions
In ECMAScript 3 and earlier, a function declaration occurring inside a block
(a block-level function) was technically a syntax error, but all browsers still sup-
ported it. Unfortunately, each browser that allowed the syntax behaved in a
slightly different way, so it’s considered a best practice to avoid function decla-
rations inside blocks (the best alternative is to use a function expression).

In an attempt to rein in this incompatible behavior, ECMAScript 5
strict mode introduced an error whenever a function declaration was used
inside a block in this way:

"use strict";

if (true) {

 // throws a syntax error in ES5, not so in ES6
 function doSomething() {
 // empty
 }
}

Functions 53

In ECMAScript 5, this code throws a syntax error. In ECMAScript 6,
the doSomething() function is considered a block-level declaration and can
be accessed and called within the same block in which it was defined. For
example:

"use strict";

if (true) {

 console.log(typeof doSomething); // "function"

 function doSomething() {
 // empty
 }

 doSomething();
}

console.log(typeof doSomething); // "undefined"

Block-level functions are hoisted to the top of the block in which they
are defined, so typeof doSomething returns "function", even though it appears
before the function declaration in the code. Once the if block is finished
executing, doSomething() no longer exists.

Deciding When to Use Block-Level Functions
Block-level functions are similar to let function expressions in that the
function definition is removed once execution flows out of the block in
which it’s defined. The key difference is that block-level functions are
hoisted to the top of the containing block. Function expressions that use
let are not hoisted, as this example illustrates:

"use strict";

if (true) {

 console.log(typeof doSomething); // throws an error

 let doSomething = function () {
 // empty
 }

 doSomething();
}

console.log(typeof doSomething);

Here, code execution stops when typeof doSomething is executed, because
the let statement hasn’t been executed yet, leaving doSomething() in the TDZ.
Knowing this difference, you can choose whether to use block-level functions
or let expressions based on whether or not you want the hoisting behavior.

54 Chapter 3

Block-Level Functions in Non-Strict Mode
ECMAScript 6 also allows block-level functions in non-strict mode, but the
behavior is slightly different. Instead of hoisting these declarations to the
top of the block, they are hoisted all the way to the containing function or
global environment. For example:

// ECMAScript 6 behavior
if (true) {

 console.log(typeof doSomething); // "function"

 function doSomething() {
 // empty
 }

 doSomething();
}

console.log(typeof doSomething); // "function"

In this example, doSomething() is hoisted into the global scope so it still
exists outside the if block. ECMAScript 6 standardized this behavior to
remove the incompatible browser behaviors that previously existed, so all
ECMAScript 6 runtimes should behave in the same way.

Allowing block-level functions improves your ability to declare func-
tions in JavaScript, but ECMAScript 6 also introduced a completely new way
to declare functions.

Arrow Functions
One of the most interesting new parts of ECMAScript 6 is the arrow func-
tion. Arrow functions are, as the name suggests, functions defined with a
new syntax that uses an arrow (=>). But arrow functions behave differently
than traditional JavaScript functions in a number of important ways:

No this, super, arguments, and new.target bindings The values of this,
super, arguments, and new.target inside the function are defined by the
closest containing non-arrow function. (super is covered in Chapter 4.)

Cannot be called with new Arrow functions do not have a [[Construct]]
method and therefore cannot be used as constructors. Arrow functions
throw an error when used with new.

No prototype Because you can’t use new on an arrow function, there’s
no need for a prototype. The prototype property of an arrow function
doesn’t exist.

Functions 55

Can’t change this The value of this inside the function can’t be
changed. It remains the same throughout the entire life cycle of the
function.

No arguments object Because arrow functions have no arguments bind-
ing, you must rely on named and rest parameters to access function
arguments.

No duplicate named parameters Arrow functions cannot have dupli-
cate named parameters in strict or non-strict mode, as opposed to non-
arrow functions, which cannot have duplicate named parameters only
in strict mode.

There are a few reasons for these differences. First and foremost, this
binding is a common source of error in JavaScript. It’s very easy to lose track
of the this value inside a function, which can result in unintended program
behavior, and arrow functions eliminate this confusion. Second, by limiting
arrow functions to simply executing code with a single this value, JavaScript
engines can more easily optimize these operations, unlike regular functions,
which might be used as a constructor or otherwise modified.

The remaining differences also focus on reducing errors and ambigui-
ties inside arrow functions. By doing so, JavaScript engines are better able
to optimize arrow function execution.

n o t e Arrow functions also have a name property that follows the same rule as other
functions.

Arrow Function Syntax
The syntax for arrow functions comes in many flavors depending on what
you’re trying to accomplish. All variations begin with function arguments,
followed by the arrow, followed by the body of the function. The arguments
and the body can take different forms depending on usage. For example,
the following arrow function takes a single argument and simply returns it:

let reflect = value => value;

// effectively equivalent to:

let reflect = function(value) {
 return value;
};

When there is only one argument for an arrow function, that one
argument can be used directly without any further syntax. The arrow
comes next, and the expression to the right of the arrow is evaluated and
returned. Even though there is no explicit return statement, this arrow func-
tion will return the first argument that is passed in.

56 Chapter 3

If you are passing in more than one argument, you must include paren-
theses around those arguments, like this:

let sum = (num1, num2) => num1 + num2;

// effectively equivalent to:

let sum = function(num1, num2) {
 return num1 + num2;
};

The sum() function simply adds two arguments together and returns the
result. The only difference between this arrow function and the reflect()
function is that the arguments are enclosed in parentheses with a comma
separating them (like traditional functions).

If there are no arguments to the function, you must include an empty
set of parentheses in the declaration, as follows:

let getName = () => "Nicholas";

// effectively equivalent to:

let getName = function() {
 return "Nicholas";
};

When you want to provide a more traditional function body, perhaps
consisting of more than one expression, you need to wrap the function
body in curly braces and explicitly define a return value, as in this version
of sum():

let sum = (num1, num2) => {
 return num1 + num2;
};

// effectively equivalent to:

let sum = function(num1, num2) {
 return num1 + num2;
};

You can more or less treat the inside of the curly braces the same as you
would in a traditional function except arguments is not available.

If you want to create a function that does nothing, you need to include
curly braces, like this:

let doNothing = () => {};

// effectively equivalent to:

let doNothing = function() {};

Functions 57

Curly braces denote the function’s body, which works just fine in the
cases you’ve seen so far. But an arrow function that wants to return an
object literal outside a function body must wrap the literal in parentheses.
For example:

let getTempItem = id => ({ id: id, name: "Temp" });

// effectively equivalent to:

let getTempItem = function(id) {

 return {
 id: id,
 name: "Temp"
 };
};

Wrapping the object literal in parentheses signals that the curly braces
are an object literal instead of the function body.

Creating Immediately Invoked Function Expressions
One popular use of functions in JavaScript is creating immediately invoked
function expressions (IIFEs). IIFEs allow you to define an anonymous func-
tion and call it immediately without saving a reference. This pattern comes
in handy when you want to create a scope that is shielded from the rest of a
program. For example:

let person = function(name) {

 return {
 getName: function() {
 return name;
 }
 };

}("Nicholas");

console.log(person.getName()); // "Nicholas"

In this code, the IIFE creates an object with a getName() method. The
method uses the name argument as the return value, effectively making name
a private member of the returned object.

You can accomplish the same thing using arrow functions, as long as
you wrap the arrow function in parentheses:

let person = ((name) => {

 return {
 getName: function() {
 return name;
 }

58 Chapter 3

 };

})("Nicholas");

console.log(person.getName()); // "Nicholas"

Note that the parentheses are only around the arrow function defini-
tion, not around ("Nicholas"). This is different from a formal function
where the parentheses can be placed outside the passed-in parameters as
well as just around the function definition.

No this Binding
One of the most common areas of error in JavaScript is the binding of this
inside functions. Because the value of this can change inside a single func-
tion depending on the context in which the function is called, it’s possible
to mistakenly affect one object when you meant to affect another. Consider
the following example:

let PageHandler = {

 id: "123456",

 init: function() {
 document.addEventListener("click", function(event) {
 this.doSomething(event.type); // error
 }, false);
 },

 doSomething: function(type) {
 console.log("Handling " + type + " for " + this.id);
 }
};

In this code, the object PageHandler is designed to handle interactions
on the page. The init() method is called to set up the interactions, and that
method in turn assigns an event handler to call this.doSomething(). However,
this code doesn’t work exactly as intended.

The call to this.doSomething() is broken because this is a reference to
the object that was the target of the event (in this case document) instead of
being bound to PageHandler. If you tried to run this code, you’d get an error
when the event handler fires because this.doSomething() doesn’t exist on the
target document object.

You could fix this by binding the value of this to PageHandler explicitly
using the bind() method on the function instead, like this:

let PageHandler = {

 id: "123456",

 init: function() {

Functions 59

 document.addEventListener("click", (function(event) {
 this.doSomething(event.type); // no error
 }).bind(this), false);
 },

 doSomething: function(type) {
 console.log("Handling " + type + " for " + this.id);
 }
};

Now the code works as expected, but it might look a bit strange. By call-
ing bind(this), you’re actually creating a new function whose this is bound
to the current this, which is PageHandler. To avoid creating an extra func-
tion, a better way to fix this code is to use an arrow function.

Arrow functions have no this binding, which means the value of this
inside an arrow function can only be determined by looking up the scope
chain. If the arrow function is contained within a non-arrow function, this
will be the same as the containing function; otherwise, this is undefined.
Here’s one way you could write this code using an arrow function:

let PageHandler = {

 id: "123456",

 init: function() {
 document.addEventListener("click",
 event => this.doSomething(event.type), false);
 },

 doSomething: function(type) {
 console.log("Handling " + type + " for " + this.id);
 }
};

The event handler in this example is an arrow function that calls this.
doSomething(). The value of this is the same as it is within init(), so this ver-
sion of the code works similarly to the one using bind(this). Even though
the doSomething() method doesn’t return a value, it’s still the only statement
executed in the function body, so there is no need to include curly braces.

Arrow functions are designed to be “throwaway” functions, and so can-
not be used to define new types; this is evident from the missing prototype
property, which regular functions have. If you try to use the new operator
with an arrow function, you’ll get an error, as in this example:

var MyType = () => {},
 object = new MyType(); // error - you can't use arrow functions with 'new'

In this code, the call to new MyType() fails because MyType is an arrow
function and therefore has no [[Construct]] behavior. Knowing that arrow
functions cannot be used with new allows JavaScript engines to further opti-
mize their behavior.

60 Chapter 3

Also, because the this value is determined by the containing function
in which the arrow function is defined, you cannot change the value of this
using call(), apply(), or bind().

Arrow Functions and Arrays
The concise syntax for arrow functions makes them ideal for use with array
processing, too. For example, if you want to sort an array using a custom
comparator, you’d typically write something like this:

var result = values.sort(function(a, b) {
 return a - b;
});

That’s a lot of syntax for a very simple procedure. Compare that to the
terser arrow function version:

var result = values.sort((a, b) => a - b);

The array methods that accept callback functions, such as sort(), map(),
and reduce(), can all benefit from simpler arrow function syntax, which
changes seemingly complex processes into simpler code.

No arguments Binding
Even though arrow functions don’t have their own arguments object, it’s pos-
sible for them to access the arguments object from a containing function.
That arguments object is then available no matter where the arrow function
is executed later on. For example:

function createArrowFunctionReturningFirstArg() {
 return () => arguments[0];
}

var arrowFunction = createArrowFunctionReturningFirstArg(5);

console.log(arrowFunction()); // 5

Inside createArrowFunctionReturningFirstArg(), the arguments[0] element
is referenced by the created arrow function. That reference contains the
first argument passed to the createArrowFunctionReturningFirstArg() function.
When the arrow function is later executed, it returns 5, which was the first
argument passed to createArrowFunctionReturningFirstArg(). Even though
the arrow function is no longer in the scope of the function that created it,
arguments remains accessible due to scope chain resolution of the arguments
identifier.

Functions 61

Identifying Arrow Functions
Despite their different syntax, arrow functions are still functions and are
identified as such. Consider the following code:

var comparator = (a, b) => a - b;

console.log(typeof comparator); // "function"
console.log(comparator instanceof Function); // true

The console.log() output reveals that both typeof and instanceof behave
the same with arrow functions as they do with other functions.

Also like other functions, you can still use call(), apply(), and bind()
on arrow functions, although the this binding of the function will not be
affected. Here are some examples:

var sum = (num1, num2) => num1 + num2;

console.log(sum.call(null, 1, 2)); // 3
console.log(sum.apply(null, [1, 2])); // 3

var boundSum = sum.bind(null, 1, 2);

console.log(boundSum()); // 3

The sum() function is called using call() and apply() to pass arguments, as
you’d do with any function. The bind() method creates boundSum(), which has
its two arguments bound to 1 and 2 so they don’t need to be passed directly.

Arrow functions are appropriate to use anywhere you’re currently using
an anonymous function expression, such as with callbacks. The next section
covers another major ECMAScript 6 development, but this one is all inter-
nal and has no new syntax.

Tail Call Optimization
Perhaps the most interesting change to functions in ECMAScript 6 is an
engine optimization that changes the tail call system. A tail call is when a
function is called as the last statement in another function, like this:

function doSomething() {
 return doSomethingElse(); // tail call
}

Tail calls as implemented in ECMAScript 5 engines are handled just like
any other function call: a new stack frame is created and pushed onto the call
stack to represent the function call. That means every previous stack frame is
kept in memory, which is problematic when the call stack gets too large.

62 Chapter 3

How Tail Calls Are Different in ECMAScript 6
ECMAScript 6 reduces the size of the call stack for certain tail calls in strict
mode (non-strict mode tail calls are left untouched). With this optimiza-
tion, instead of creating a new stack frame for a tail call, the current stack
frame is cleared and reused as long as the following conditions are met:

•	 The tail call does not require access to variables in the current stack
frame (meaning the function is not a closure).

•	 The function making the tail call has no further work to do after the
tail call returns.

•	 The result of the tail call is returned as the function value.

As an example, this code can easily be optimized because it fits all
three criteria:

"use strict";

function doSomething() {
 // optimized
 return doSomethingElse();
}

This function makes a tail call to doSomethingElse(), returns the result
immediately, and doesn’t access any variables in the local scope. One small
change, not returning the result, results in an unoptimized function:

"use strict";

function doSomething() {
 // not optimized - no return
 doSomethingElse();
}

Similarly, if you have a function that performs an operation after
returning from the tail call, the function can’t be optimized:

"use strict";

function doSomething() {
 // not optimized - must add after returning
 return 1 + doSomethingElse();
}

This example adds the result of doSomethingElse() with 1 before return-
ing the value, and that’s enough to turn off optimization.

Functions 63

Another common way to inadvertently turn off optimization is to store
the result of a function call in a variable and then return the result, such as:

"use strict";

function doSomething() {
 // not optimized - call isn't in tail position
 var result = doSomethingElse();
 return result;
}

This example cannot be optimized because the value of doSomethingElse()
isn’t immediately returned.

Perhaps the hardest situation to avoid is in using closures. Because a
closure has access to variables in the containing scope, tail call optimiza-
tion may be turned off. For example:

"use strict";

function doSomething() {
 var num = 1,
 func = () => num;

 // not optimized - function is a closure
 return func();
}

The closure func() has access to the local variable num in this example.
Even though the call to func() immediately returns the result, optimization
can’t occur due to referencing the variable num.

How to Harness Tail Call Optimization
In practice, tail call optimization happens behind the scenes, so you don’t
need to think about it unless you’re trying to optimize a function. The pri-
mary use case for tail call optimization is in recursive functions, because
that is where the optimization has the greatest effect. Consider this func-
tion, which computes factorials:

function factorial(n) {

 if (n <= 1) {
 return 1;
 } else {

 // not optimized - must multiply after returning
 return n * factorial(n - 1);
 }
}

64 Chapter 3

This version of the function cannot be optimized, because multiplica-
tion must happen after the recursive call to factorial(). If n is a very large
number, the call stack size will grow and could potentially cause a stack
overflow.

To optimize the function, you need to ensure that the multiplication
doesn’t happen after the last function call. To do this, you can use a default
parameter to move the multiplication operation outside the return state-
ment. The resulting function carries along the temporary result into the
next iteration, creating a function that behaves the same but can be opti-
mized by an ECMAScript 6 engine. Here’s the new code:

function factorial(n, p = 1) {

 if (n <= 1) {
 return 1 * p;
 } else {
 let result = n * p;

 // optimized
 return factorial(n - 1, result);
 }
}

In this rewritten version of factorial(), a second argument p is added as
a parameter with a default value of 1. The p parameter holds the previous
multiplication result so the next result can be computed without another
function call. When n is greater than 1, the multiplication is done first
and then passed in as the second argument to factorial(). This allows the
ECMAScript 6 engine to optimize the recursive call.

Think about tail call optimization whenever you’re writing a recursive
function, because it can provide a significant performance improvement,
especially when applied in a computationally expensive function.

W a r n i n g At the time of this writing, ECMAScript 6 tail call optimization is undergoing
review for changes. It’s possible that tail call optimization will eventually require
special syntax for increased clarity. The ongoing discussion may result in changes
in ECMAScript 8 (ECMAScript 2017).

Summary
Functions haven’t undergone a huge change in ECMAScript 6 but rather a
series of incremental changes that make them easier to work with.

Default function parameters allow you to easily specify what value to
use when a particular argument isn’t passed. Prior to ECMAScript 6, this
would require some extra code inside the function to check for the pres-
ence of arguments and assign a different value.

Functions 65

Rest parameters allow you to specify an array into which all remaining
parameters should be placed. Using a real array and letting you indicate
which parameters to include makes rest parameters a much more flexible
solution than arguments.

The spread operator is a companion to rest parameters, allowing you
to deconstruct an array into separate parameters when calling a function.
Prior to ECMAScript 6, there were only two ways to pass individual parame-
ters contained in an array: by manually specifying each parameter or using
apply(). With the spread operator, you can easily pass an array to any func-
tion without worrying about the this binding of the function.

The addition of the name property should help you more easily identify
functions for debugging and evaluation purposes. ECMAScript 6 also for-
mally defines the behavior of block-level functions so they are no longer a
syntax error in strict mode.

In ECMAScript 6, the behavior of a function is defined by [[Call]],
normal function execution, and [[Construct]] when a function is called with
new. The new.target metaproperty also allows you to determine if a function
was called using new or not.

The biggest change to functions in ECMAScript 6 was the addition of
arrow functions. Arrow functions are designed to be used in place of anony-
mous function expressions. Arrow functions have a more concise syntax,
lexical this binding, and no arguments object. Additionally, arrow functions
can’t change their this binding and therefore can’t be used as constructors.

Tail call optimization allows some function calls to be optimized to
maintain a smaller call stack, use less memory, and prevent stack overflow
errors. This optimization is applied by the engine automatically when it is
safe to do so; however, you might decide to rewrite recursive functions to
take advantage of this optimization.

4
E x p a n d E d O b j E c t

F u n c t i O n a l i t y

ECMAScript 6 focuses heavily on making
objects more useful, which makes sense

because nearly every value in JavaScript is
some type of object. The number of objects

developers use in an average JavaScript program
continues to increase as the complexity of JavaScript
applications increases. With more objects in a pro
gram, it has become necessary to use them more
effectively.

ECMAScript 6 improves the use of objects in a number of ways, from
simple syntax extensions to options for manipulating and interacting with
them, and this chapter covers those improvements in detail.

68 Chapter 4

Object Categories
JavaScript uses different terminology to describe objects in the standard as
opposed to those added by execution environments, such as the browser.
The ECMAScript 6 specification has clear definitions for each object cate
gory. It’s essential to understand this terminology to grasp the language as
a whole. The object categories are:

Ordinary objects Have all the default internal behaviors for objects in
JavaScript.

Exotic objects Have internal behavior that differs from the default in
some way.

Standard objects Defined by ECMAScript 6, such as Array, Date, and
so on. Standard objects can be ordinary or exotic.

Built-in objects Present in a JavaScript execution environment when a
script begins to execute. All standard objects are builtin objects.

I’ll use these terms throughout the book to explain the various objects
that ECMAScript 6 defines.

Object Literal Syntax Extensions
The object literal is one of the most popular patterns in JavaScript. JSON is
built on its syntax, and it’s in nearly every JavaScript file on the Internet. The
object literal’s popularity is due to its succinct syntax for creating objects that
would otherwise take several lines of code to create. Fortunately for develop
ers, ECMAScript 6 makes object literals more powerful and even more suc
cinct by extending the syntax in several ways.

Property Initializer Shorthand
In ECMAScript 5 and earlier, object literals were simply collections of
namevalue pairs, meaning that some duplication could occur when prop
erty values are initialized. For example:

function createPerson(name, age) {
 return {
 name: name,
 age: age
 };
}

The createPerson() function creates an object whose property names are
the same as the function parameter names. The result appears to be the
duplication of name and age, even though one is the name of an object prop
erty and the other provides the value of that property. The key name in the
returned object is assigned the value contained in the variable name, and the
key age in the returned object is assigned the value contained in the vari
able age.

Expanded Object Functionality 69

In ECMAScript 6, you can eliminate the duplication that exists around
property names and local variables by using the property initializer shorthand
syntax. When an object property name is the same as the local variable
name, you can simply include the name without a colon and value. For
example, createPerson() can be rewritten for ECMAScript 6 as follows:

function createPerson(name, age) {
 return {
 name,
 age
 };
}

When a property in an object literal only has a name, the JavaScript
engine looks in the surrounding scope for a variable of the same name. If
it finds one, that variable’s value is assigned to the same name on the object
literal. In this example, the object literal property name is assigned the value
of the local variable name.

Shorthand property syntax makes object literal initialization even more
succinct and helps to eliminate naming errors. Assigning a property with
the same name as a local variable is a very common pattern in JavaScript,
making this extension a welcome addition.

Concise Methods
ECMAScript 6 also improves the syntax for assigning methods to object
literals. In ECMAScript 5 and earlier, you must specify a name and then the
full function definition to add a method to an object, as follows:

var person = {
 name: "Nicholas",
 sayName: function() {
 console.log(this.name);
 }
};

In ECMAScript 6, the syntax is made more concise by eliminating the
colon and the function keyword. That means you can rewrite the example
like this:

var person = {
 name: "Nicholas",
 sayName() {
 console.log(this.name);
 }
};

This shorthand syntax, also called concise method syntax, creates a
method on the person object just as the previous example did. The sayName()
property is assigned an anonymous function expression and has all the
same characteristics as the ECMAScript 5 sayName() function. The one

70 Chapter 4

difference is that concise methods can use super (discussed in “Easy
Prototype Access with Super References” on page 77), whereas the non
concise methods cannot.

n O t E The name property of a method created using concise method shorthand is the name
used before the parentheses. In this example, the name property for person.sayName() is
"sayName".

Computed Property Names
ECMAScript 5 and earlier could compute property names on object instances
when those properties were set with square brackets instead of dot notation.
The square brackets allow you to specify property names using variables and
string literals that might contain characters that would cause a syntax error if
they were used in an identifier. Here’s an example:

var person = {},
 lastName = "last name";

person["first name"] = "Nicholas";
person[lastName] = "Zakas";

console.log(person["first name"]); // "Nicholas"
console.log(person[lastName]); // "Zakas"

Because lastName is assigned a value of "last name", both property names
in this example use a space, making it impossible to reference them using
dot notation. However, bracket notation allows any string value to be used
as a property name, so assigning "first name" to "Nicholas" and "last name" to
"Zakas" works.

Additionally, you can use string literals directly as property names in
object literals, like this:

var person = {
 "first name": "Nicholas"
};

console.log(person["first name"]); // "Nicholas"

This pattern works for property names that are known ahead of time
and can be represented with a string literal. However, if the property name
"first name" were contained in a variable (as in the previous example) or
had to be calculated, there would be no way to define that property using
an object literal in ECMAScript 5.

Expanded Object Functionality 71

In ECMAScript 6, computed property names are part of the object
literal syntax, and they use the same square bracket notation that has
been used to reference computed property names in object instances. For
example:

let lastName = "last name";

let person = {
 "first name": "Nicholas",
 [lastName]: "Zakas"
};

console.log(person["first name"]); // "Nicholas"
console.log(person[lastName]); // "Zakas"

The square brackets inside the object literal indicate that the property
name is computed, so its contents are evaluated as a string. That means you
can also include expressions, such as the following:

var suffix = " name";

var person = {
 ["first" + suffix]: "Nicholas",
 ["last" + suffix]: "Zakas"
};

console.log(person["first name"]); // "Nicholas"
console.log(person["last name"]); // "Zakas"

These properties evaluate to "first name" and "last name", and you can
use those strings to reference the properties later. Anything you would put
inside square brackets while using bracket notation on object instances will
also work for computed property names inside object literals.

New Methods
One of the design goals of ECMAScript, beginning with ECMAScript 5,
was to avoid both creating new global functions and creating methods on
Object.prototype. Instead, when the developers want to add new methods to
the standard, they make those methods available on an appropriate exist
ing object. As a result, the Object global has received an increasing number
of methods when no other objects are more appropriate. ECMAScript 6
introduces a couple of new methods on the Object global that are designed
to make certain tasks easier.

72 Chapter 4

The Object.is() Method
When you want to compare two values in JavaScript, you’re probably used
to using either the equals operator (==) or the identically equals operator
(===). Many developers prefer the latter to avoid type coercion during com
parison. But even the identically equals operator isn’t entirely accurate. For
example, the values +0 and −0 are considered equal by ===, even though
they’re represented differently in the JavaScript engine. Also, NaN === NaN
returns false, which necessitates using isNaN() to detect NaN properly.

ECMAScript 6 introduces the Object.is() method to remedy the
remaining inaccuracies of the identically equals operator. This method
accepts two arguments and returns true if the values are equivalent. Two
values are considered equivalent when they’re the same type and have the
same value. Here are some examples:

console.log(+0 == -0); // true
console.log(+0 === -0); // true
console.log(Object.is(+0, -0)); // false

console.log(NaN == NaN); // false
console.log(NaN === NaN); // false
console.log(Object.is(NaN, NaN)); // true

console.log(5 == 5); // true
console.log(5 == "5"); // true
console.log(5 === 5); // true
console.log(5 === "5"); // false
console.log(Object.is(5, 5)); // true
console.log(Object.is(5, "5")); // false

In many cases, Object.is() works the same as the === operator. The only
differences are that +0 and −0 are considered not equivalent, and NaN is con
sidered equivalent to NaN. But there’s no need to stop using equality opera
tors. Choose whether to use Object.is() instead of == or === based on how
those special cases affect your code.

The Object.assign() Method
Mixins are among the most popular patterns for object composition in
JavaScript. In a mixin, one object receives properties and methods from
another object. Many JavaScript libraries have a mixin method similar
to this:

function mixin(receiver, supplier) {
 Object.keys(supplier).forEach(function(key) {
 receiver[key] = supplier[key];
 });

 return receiver;
}

Expanded Object Functionality 73

The mixin() function iterates over the own properties of supplier and
copies them onto receiver (a shallow copy, where object references are
shared when property values are objects). This allows the receiver to gain
new properties without inheritance, as in this code:

function EventTarget() { /*...*/ }
EventTarget.prototype = {
 constructor: EventTarget,
 emit: function() { /*...*/ },
 on: function() { /*...*/ }
};

var myObject = {};
mixin(myObject, EventTarget.prototype);

myObject.emit("somethingChanged");

Here, myObject receives behavior from the EventTarget.prototype object.
This gives myObject the ability to publish events and subscribe to them using
the emit() and on() methods, respectively.

This mixin pattern became popular enough that ECMAScript 6
added the Object.assign() method, which behaves the same way, accepting
a receiver and any number of suppliers and then returning the receiver.
The name change from mixin() to assign() reflects the actual operation
that occurs. Because the mixin() function uses the assignment operator (=),
it cannot copy accessor properties to the receiver as accessor properties.
The name Object.assign() was chosen to reflect this distinction.

n O t E Similar methods in various libraries might have other names for the same basic
functionality; popular alternates include the extend() and mix() methods. In addi-
tion to the Object.assign() method, an Object.mixin() method was briefly added
in ECMAScript 6. The primary difference was that Object.mixin() also copied over
accessor properties, but the method was removed due to concerns over the use of super
(discussed in “Easy Prototype Access with Super References” on page 77).

You can use Object.assign() anywhere you would have used the mixin()
function. Here’s an example:

function EventTarget() { /*...*/ }
EventTarget.prototype = {
 constructor: EventTarget,
 emit: function() { /*...*/ },
 on: function() { /*...*/ }
}

var myObject = {}
Object.assign(myObject, EventTarget.prototype);

myObject.emit("somethingChanged");

74 Chapter 4

The Object.assign() method accepts any number of suppliers, and the
receiver receives the properties in the order in which the suppliers are spec
ified. That means the second supplier might overwrite a value from the first
supplier on the receiver, which is what happens in this code snippet:

var receiver = {};

Object.assign(receiver,
 {
 type: "js",
 name: "file.js"
 },
 {
 type: "css"
 }
);

console.log(receiver.type); // "css"
console.log(receiver.name); // "file.js"

The value of receiver.type is "css" because the second supplier over
wrote the value of the first.

The Object.assign() method isn’t a significant addition to ECMAScript 6,
but it does formalize a common function found in many JavaScript libraries.

WOr king W i t h accE ssOr prOpE r t iE s

Keep in mind that Object.assign() doesn’t create accessor properties on the
receiver when a supplier has accessor properties. Because Object.assign() uses
the assignment operator, an accessor property on a supplier will become a
data property on the receiver. For example:

var receiver = {},
 supplier = {
 get name() {
 return "file.js"
 }
 };

Object.assign(receiver, supplier);

var descriptor = Object.getOwnPropertyDescriptor(receiver, "name");

console.log(descriptor.value); // "file.js"
console.log(descriptor.get); // undefined

In this code, the supplier has an accessor property called name. After
using the Object.assign() method, receiver.name exists as a data property
with a value of "file.js" because supplier.name returned "file.js" when
Object.assign() was called.

Expanded Object Functionality 75

Duplicate Object Literal Properties
ECMAScript 5 strict mode introduced a check for duplicate object literal
properties that would throw an error if a duplicate was found. For example,
this code was problematic:

"use strict";

var person = {
 name: "Nicholas",
 name: "Greg" // syntax error in ES5 strict mode
};

When running in ECMAScript 5 strict mode, the second name property
causes a syntax error. But in ECMAScript 6, the duplicate property check
was removed. Strict and nonstrict mode code no longer check for duplicate
properties. Instead, the last property of the given name becomes the prop
erty’s actual value, as shown here:

"use strict";

var person = {
 name: "Nicholas",
 name: "Greg" // no error in ES6 strict mode
};

console.log(person.name); // "Greg"

In this example, the value of person.name is "Greg" because that’s the last
value assigned to the property.

Own Property Enumeration Order
ECMAScript 5 didn’t define the enumeration order of object properties; the
JavaScript engine vendors did. However, ECMAScript 6 strictly defines the
order in which own properties must be returned when they’re enumerated.
This affects how properties are returned using Object.getOwnPropertyNames()
and Reflect.ownKeys (covered in Chapter 12). It also affects the order in which
properties are processed by Object.assign().

The basic order for own property enumeration is:

1. All numeric keys in ascending order

2. All string keys in the order in which they were added to the object

3. All symbol keys (covered in Chapter 6) in the order in which they were
added to the object

Here’s an example:

var obj = {
 a: 1,

76 Chapter 4

 0: 1,
 c: 1,
 2: 1,
 b: 1,
 1: 1
};

obj.d = 1;

console.log(Object.getOwnPropertyNames(obj).join("")); // "012acbd"

The Object.getOwnPropertyNames() method returns the properties in obj in
the order 0, 1, 2, a, c, b, d. Note that the numeric keys are grouped together
and sorted, even though they appear out of order in the object literal. The
string keys come after the numeric keys and appear in the order in which
they were added to obj. The keys in the object literal come first, followed by
any dynamic keys that were added later (in this case, d).

n O t E The for-in loop still has an unspecified enumeration order because not all JavaScript
engines implement it the same way. The Object.keys() method and JSON.stringify()
are both specified to use the same (unspecified) enumeration order as for-in.

Although enumeration order is a subtle change to how JavaScript
works, it’s not uncommon to find programs that rely on a specific enumera
tion order to work correctly. ECMAScript 6, by defining the enumeration
order, ensures that JavaScript code relying on enumeration will work cor
rectly regardless of where it is executed.

Enhancements for Prototypes
Prototypes are the foundation of inheritance in JavaScript, and ECMA
Script 6 continues to make prototypes more useful. Early versions of
JavaScript severely limited what you could do with prototypes. However,
as the language matured and developers became more familiar with
how prototypes work, it became clear that developers wanted more
control over prototypes and easier ways to work with them. As a result,
ECMAScript 6 introduced some improvements to prototypes.

Changing an Object’s Prototype
Normally, an object’s prototype is specified when the object is created, via
either a constructor or the Object.create() method. The idea that an object’s
prototype remains unchanged after instantiation was one of the predomi
nant assumptions in JavaScript programming through ECMAScript 5.
ECMAScript 5 did add the Object.getPrototypeOf() method for retriev
ing the prototype of any given object, but it still lacked a standard way to
change an object’s prototype after instantiation.

ECMAScript 6 changes that assumption with the addition of the
Object.setPrototypeOf() method, which allows you to change the prototype

Expanded Object Functionality 77

of any given object. The Object.setPrototypeOf() method accepts two argu
ments: the object whose prototype should change and the object that should
become the first argument’s prototype. For example:

let person = {
 getGreeting() {
 return "Hello";
 }
};

let dog = {
 getGreeting() {
 return "Woof";
 }
};

// prototype is person
let friend = Object.create(person);
console.log(friend.getGreeting()); // "Hello"
console.log(Object.getPrototypeOf(friend) === person); // true

// set prototype to dog
Object.setPrototypeOf(friend, dog);
console.log(friend.getGreeting()); // "Woof"
console.log(Object.getPrototypeOf(friend) === dog); // true

This code defines two base objects: person and dog. Both objects have a
getGreeting() method that returns a string. The object friend first inherits
from the person object, meaning that getGreeting() outputs "Hello". When
the prototype becomes the dog object, person.getGreeting() outputs "Woof"
because the original relationship to person is broken.

The actual value of an object’s prototype is stored in an internalonly
property called [[Prototype]]. The Object.getPrototypeOf() method returns
the value stored in [[Prototype]] and Object.setPrototypeOf() changes the
value stored in [[Prototype]]. However, these aren’t the only ways to work
with the [[Prototype]] value.

Easy Prototype Access with Super References
As previously mentioned, prototypes are very important in JavaScript, and a
lot of work went into making them easier to use in ECMAScript 6. Another
improvement is the introduction of super references, which make accessing
functionality on an object’s prototype easier. For example, to override a
method on an object instance so it also calls the prototype method of the
same name, you’d do the following in ECMAScript 5:

let person = {
 getGreeting() {
 return "Hello";
 }
};

78 Chapter 4

let dog = {
 getGreeting() {
 return "Woof";
 }
};

let friend = {
 getGreeting() {
 return Object.getPrototypeOf(this).getGreeting.call(this) + ", hi!";
 }
};

// set prototype to person
Object.setPrototypeOf(friend, person);
console.log(friend.getGreeting()); // "Hello, hi!"
console.log(Object.getPrototypeOf(friend) === person); // true

// set prototype to dog
Object.setPrototypeOf(friend, dog);
console.log(friend.getGreeting()); // "Woof, hi!"
console.log(Object.getPrototypeOf(friend) === dog); // true

In this example, getGreeting() on friend calls the prototype method of
the same name. The Object.getPrototypeOf() method ensures the correct
prototype is called, and then an additional string is appended to the out
put. The additional .call(this) ensures that the this value inside the proto
type method is set correctly.

Remembering to use Object.getPrototypeOf() and .call(this) to call a
method on the prototype is a bit involved, so ECMAScript 6 introduced
super. At its simplest, super is a pointer to the current object’s prototype,
effectively the Object.getPrototypeOf(this) value. Knowing that, you can
simplify the getGreeting() method as follows:

let friend = {
 getGreeting() {
 // in the previous example, this is the same as:
 // Object.getPrototypeOf(this).getGreeting.call(this)
 return super.getGreeting() + ", hi!";
 }
};

The call to super.getGreeting() is the same as Object.getPrototypeOf(this)
.getGreeting.call(this) in this context. Similarly, you can call any method on
an object’s prototype by using a super reference, as long as it’s inside a con
cise method. Attempting to use super outside of concise methods results in a
syntax error, as in this example:

let friend = {
 getGreeting: function() {

Expanded Object Functionality 79

 // syntax error
 return super.getGreeting() + ", hi!";
 }
};

This example uses a named property with a function, and the call to
super.getGreeting() results in a syntax error because super is invalid in this
context.

The super reference is really helpful when you have multiple levels of
inheritance, because in that case, Object.getPrototypeOf() no longer works in
all circumstances. For example:

let person = {
 getGreeting() {
 return "Hello";
 }
};

// prototype is person
let friend = {
 getGreeting() {
 return Object.getPrototypeOf(this).getGreeting.call(this) + ", hi!";
 }
};
Object.setPrototypeOf(friend, person);

// prototype is friend
let relative = Object.create(friend);

console.log(person.getGreeting()); // "Hello"
console.log(friend.getGreeting()); // "Hello, hi!"
console.log(relative.getGreeting()); // error!

When relative.getGreeting() is called, the call to Object.getPrototypeOf()
results in an error. The reason is that this is relative, and the prototype
of relative is the friend object. When friend.getGreeting().call() is called
with relative as this, the process starts over again and continues to call
recursively until a stack overflow error occurs.

This problem is difficult to solve in ECMAScript 5, but with ECMA
Script 6 and super, it’s easy:

let person = {
 getGreeting() {
 return "Hello";
 }
};

// prototype is person
let friend = {
 getGreeting() {
 return super.getGreeting() + ", hi!";

80 Chapter 4

 }
};
Object.setPrototypeOf(friend, person);

// prototype is friend
let relative = Object.create(friend);

console.log(person.getGreeting()); // "Hello"
console.log(friend.getGreeting()); // "Hello, hi!"
console.log(relative.getGreeting()); // "Hello, hi!"

Because super references are not dynamic, they always refer to the correct
object. In this case, super.getGreeting() always refers to person.getGreeting()
regardless of how many other objects inherit the method.

A Formal Method Definition
Prior to ECMAScript 6, the concept of a “method” wasn’t formally defined.
Methods were just object properties that contained functions instead of
data. ECMAScript 6 formally defines a method as a function that has an
internal [[HomeObject]] property containing the object to which the method
belongs. Consider the following:

let person = {

 // method
 getGreeting() {
 return "Hello";
 }
};

// not a method
function shareGreeting() {
 return "Hi!";
}

This code example defines person with a single method called
getGreeting(). The [[HomeObject]] for getGreeting() is person by virtue of
assigning the function directly to an object. However, the shareGreeting()
function has no [[HomeObject]] specified because it wasn’t assigned to an
object when it was created. In most cases, this difference isn’t important,
but it becomes very important when using super references.

Any reference to super uses the [[HomeObject]] to determine what to
do. The first step in the process is to call Object.getPrototypeOf() on the
[[HomeObject]] to retrieve a reference to the prototype. Next, the prototype
is searched for a function with the same name. Then, the this binding is set
and the method is called. Take a look at the following example.

Expanded Object Functionality 81

let person = {
 getGreeting() {
 return "Hello";
 }
};

// prototype is person
let friend = {
 getGreeting() {
 return super.getGreeting() + ", hi!";
 }
};
Object.setPrototypeOf(friend, person);

console.log(friend.getGreeting()); // "Hello, hi!"

Calling friend.getGreeting() returns a string, which combines the
value from person.getGreeting() with ", hi!". The [[HomeObject]] of
friend.getGreeting() is friend, and the prototype of friend is person, so
super.getGreeting() is equivalent to person.getGreeting.call(this).

Summary
Objects are the center of JavaScript programming, and ECMAScript 6
makes some helpful changes to objects that make them easier to work with
and more flexible.

ECMAScript 6 makes several changes to object literals. Shorthand
property definitions make assigning properties with the same names as
inscope variables simpler. Computed property names allow you to specify
nonliteral values as property names, which you’ve been able to do in other
areas of the language. Shorthand methods let you type far fewer characters
to define methods on object literals by completely omitting the colon and
function keyword. ECMAScript 6 loosens the strict mode check for duplicate
object literal property names as well, meaning two properties with the same
name can be in a single object literal without throwing an error.

The Object.assign() method makes it easier to change multiple proper
ties on a single object at once and is very useful when you use the mixin
pattern. The Object.is() method performs strict equality on any value,
effectively becoming a safer version of === when you’re working with spe
cial JavaScript values.

ECMAScript 6 clearly defines enumeration order for own properties.
Numeric keys always come first in ascending order followed by string keys
in insertion order and symbol keys in insertion order.

It’s now possible to modify an object’s prototype after it’s been created
thanks to ECMAScript 6’s Object.setPrototypeOf() method.

In addition, you can use the super keyword to call methods on an
object’s prototype. The this binding inside a method invoked using super
is set up to automatically work with the current value of this.

5
D e s t r u c t u r i n g f o r
e a s i e r D a t a a c c e s s

Object and array literals are two of
the most frequently used notations in

JavaScript, and thanks to the popular JSON
data format, they have become a particularly

important part of the language. It’s quite common to
define objects and arrays, and then systematically pull
out relevant pieces of information from those struc-
tures. ECMAScript 6 simplifies this task by adding
destructuring, which is the process of breaking down a
data structure into smaller parts. This chapter shows
you how to harness destructuring for objects and
arrays.

84 Chapter 5

Why Is Destructuring Useful?
In ECMAScript 5 and earlier, the need to fetch information from objects
and arrays could result in a lot of duplicate code to get certain data into
local variables.

For example:

let options = {
 repeat: true,
 save: false
};

// extract data from the object
let repeat = options.repeat,
 save = options.save;

This code extracts the values of repeat and save from the options object,
and stores that data in local variables with the same names. Although this
code looks simple, imagine if you had a large number of variables to assign:
you would have to assign them all one by one. And if you had to traverse a
nested data structure to find the information instead, you might have to dig
through the entire structure just to find one piece of data.

That’s why ECMAScript 6 adds destructuring for objects and arrays.
When you break down a data structure into smaller parts, getting the infor-
mation you need from it becomes much easier. Many languages implement
destructuring with a minimal amount of syntax to make the process simpler
to use. The ECMAScript 6 implementation actually uses syntax you’re already
familiar with: the syntax for object and array literals.

Object Destructuring
Object destructuring syntax uses an object literal on the left side of an
assignment operation. For example:

let node = {
 type: "Identifier",
 name: "foo"
};

let { type, name } = node;

console.log(type); // "Identifier"
console.log(name); // "foo"

In this code, the value of node.type is stored in a variable called type,
and the value of node.name is stored in a variable called name. This syntax is
the same as the object literal property initializer shorthand introduced in
Chapter 4. The identifiers type and name are both declarations of local vari-
ables and the properties to read the value from on the node object.

Destructuring for Easier Data Access 85

Destructuring Assignment
The object destructuring examples you’ve seen so far have used variable
declarations. However, it’s also possible to use destructuring in assignments.
For instance, you might decide to change the values of variables after they’re
defined, as follows:

let node = {
 type: "Identifier",
 name: "foo"
},
type = "Literal",
name = 5;

// assign different values using destructuring
({ type, name } = node);

console.log(type); // "Identifier"
console.log(name); // "foo"

In this example, type and name are initialized with values when declared,
and then two variables with the same names are initialized with different
values. The next line uses destructuring assignments to change those values
by reading from the node object. Note that you must put parentheses around
a destructuring assignment statement. The reason is that an opening curly
brace is expected to be a block statement, and a block statement cannot
appear on the left side of an assignment. The parentheses signal that the
next curly brace is not a block statement and should be interpreted as an
expression, allowing the assignment to complete.

Don’t forge t t he ini t i a l i z e r

When you’re using destructuring to declare variables using var, let, or const,
you must supply an initializer (the value after the equal sign). The following
lines of code will all throw syntax errors due to a missing initializer:

// syntax error!
var { type, name };

// syntax error!
let { type, name };

// syntax error!
const { type, name };

Although const always requires an initializer, even when you’re using non-
destructured variables, var and let require initializers only when you’re using
destructuring.

86 Chapter 5

A destructuring assignment expression evaluates to the right side of
the expression (after the =). That means you can use a destructuring assign-
ment expression anywhere a value is expected. For instance, consider this
example, which passes a value to a function:

let node = {
 type: "Identifier",
 name: "foo"
},
type = "Literal",
name = 5;

function outputInfo(value) {
 console.log(value === node); // true
}

outputInfo({ type, name } = node);

console.log(type); // "Identifier"
console.log(name); // "foo"

The outputInfo() function is called with a destructuring assignment
expression. The expression evaluates to node because that is the value of the
right side of the expression. The assignments to type and name behave nor-
mally, and node is passed to the outputInfo() function.

n o t e An error is thrown when the right side of the destructuring assignment expression (the
expression after =) evaluates to null or undefined. This happens because any attempt
to read a property of null or undefined results in a runtime error.

Default Values
When you use a destructuring assignment statement and you specify a local
variable with a property name that doesn’t exist on the object, that local vari-
able is assigned a value of undefined. For example:

let node = {
 type: "Identifier",
 name: "foo"
};

let { type, name, value } = node;

console.log(type); // "Identifier"
console.log(name); // "foo"
console.log(value); // undefined

This code defines an additional local variable called value and attempts
to assign it a value. However, no corresponding value property is on the node
object, so the variable is assigned the value of undefined as expected.

Destructuring for Easier Data Access 87

You can optionally define a default value to use when a specified prop-
erty doesn’t exist. To do so, insert an equal sign (=) after the property name
and specify the default value, like this:

let node = {
 type: "Identifier",
 name: "foo"
};

let { type, name, value = true } = node;

console.log(type); // "Identifier"
console.log(name); // "foo"
console.log(value); // true

In this example, the variable value is given true as a default value. The
default value is only used if the property is missing on node or has a value of
undefined. Because no node.value property exists, the variable value uses the
default value. This works similarly to the default parameter values for func-
tions, as discussed in Chapter 3.

Assigning to Different Local Variable Names
Up to this point, each destructuring assignment example has used the
object property name as the local variable name; for example, the value of
node.type was stored in a type variable. That works well when you want to use
the same name, but what if you don’t? ECMAScript 6 has an extended syn-
tax that allows you to assign to a local variable with a different name, and
that syntax looks like the object literal non-shorthand property initializer
syntax. Here’s an example:

let node = {
 type: "Identifier",
 name: "foo"
};

let { type: localType, name: localName } = node;

console.log(localType); // "Identifier"
console.log(localName); // "foo"

This code uses destructuring assignments to declare the localType
and localName variables, which contain the values from the node.type and
node.name properties, respectively. The syntax type: localType reads the prop-
erty named type and stores its value in the localType variable. This syntax is
effectively the opposite of traditional object literal syntax, where the name
is on the left of the colon and the value is on the right. In this case, the
name is on the right of the colon and the location of the value to read is
on the left.

88 Chapter 5

You can add default values when you’re using a different variable name,
as well. The equal sign and default value are still placed after the local vari-
able name. For example:

let node = {
 type: "Identifier"
};

let { type: localType, name: localName = "bar" } = node;

console.log(localType); // "Identifier"
console.log(localName); // "bar"

Here, the localName variable has a default value of "bar". The variable is
assigned its default value because no node.name property exists.

So far, you’ve learned how to use object destructuring on an object
whose properties are primitive values. You can also use object destructur-
ing to retrieve values in nested object structures.

Nested Object Destructuring
By using syntax similar to that of object literals, you can navigate into a
nested object structure to retrieve just the information you want. Here’s
an example:

let node = {
 type: "Identifier",
 name: "foo",
 loc: {
 start: {
 line: 1,
 column: 1
 },
 end: {
 line: 1,
 column: 4
 }
 }
};

let { loc: { start }} = node;

console.log(start.line); // 1
console.log(start.column); // 1

The destructuring pattern in this example uses curly braces to indicate
that the pattern should descend into the property named loc on node and
look for the start property. Recall from the previous section that a colon
in a destructuring pattern means the identifier before the colon is giving a
location to inspect, and the right side assigns a value. A curly brace after the
colon indicates that the destination is nested another level into the object.

Destructuring for Easier Data Access 89

You can go one step further and use a different name for the local vari-
able as well:

let node = {
 type: "Identifier",
 name: "foo",
 loc: {
 start: {
 line: 1,
 column: 1
 },
 end: {
 line: 1,
 column: 4
 }
 }
};

// extract node.loc.start
let { loc: { start: localStart }} = node;

console.log(localStart.line); // 1
console.log(localStart.column); // 1

In this version of the code, node.loc.start is stored in a new local vari-
able called localStart. Destructuring patterns can be nested to an arbitrary
level of depth, and all capabilities will be available at each level.

Object destructuring is very powerful because it provides you with lots
of options, but array destructuring offers some unique capabilities that
allow you to extract information from arrays.

sy n ta x gotch a

Be careful when you’re using nested destructuring because you can inadver-
tently create a statement that has no effect. Empty curly braces are legal in
object destructuring; however, they don’t do anything. For example:

// no variables declared!
let { loc: {} } = node;

No bindings are declared in this statement. Due to the curly braces on the
right, loc is used as a location to inspect rather than a binding to create. In
such cases, it’s likely that the intent was to use = to define a default value rather
than : to define a location. It’s possible that this syntax will be made illegal in
the future, but for now, this is a gotcha to look out for.

90 Chapter 5

Array Destructuring
Array destructuring syntax is very similar to object destructuring: it just
uses array literal syntax instead of object literal syntax. The destructuring
operates on positions within an array rather than the named properties
that are available in objects. For example:

let colors = ["red", "green", "blue"];

let [firstColor, secondColor] = colors;

console.log(firstColor); // "red"
console.log(secondColor); // "green"

Here, array destructuring pulls out the values "red" and "green" from
the colors array, and stores them in the firstColor and secondColor variables.
Those values are chosen because of their position in the array; the actual
variable names could be anything. Any items not explicitly mentioned in
the destructuring pattern are ignored. Keep in mind that the array isn’t
changed in any way.

You can also omit items in the destructuring pattern and only provide
variable names for the items you’re interested in. If, for example, you just
want the third value of an array, you don’t need to supply variable names
for the first and second items. Here’s how that works:

let colors = ["red", "green", "blue"];

let [, , thirdColor] = colors;

console.log(thirdColor); // "blue"

This code uses a destructuring assignment to retrieve the third item in
colors. The commas preceding thirdColor in the pattern are placeholders for
the array items that come before it. By using this approach, you can easily
pick out values from any number of slots in the middle of an array without
needing to provide variable names for them.

n o t e Similar to object destructuring, you must always provide an initializer when using
array destructuring with var, let, or const.

Destructuring Assignment
You can use array destructuring in the context of an assignment, but unlike
object destructuring, there is no need to wrap the expression in parenthe-
ses. Consider the following example.

Destructuring for Easier Data Access 91

let colors = ["red", "green", "blue"],
 firstColor = "black",
 secondColor = "purple";

[firstColor, secondColor] = colors;

console.log(firstColor); // "red"
console.log(secondColor); // "green"

The destructured assignment in this code works in a similar manner
to the previous array destructuring example. The only difference is that
firstColor and secondColor have already been defined. Most of the time, what
you know now about array destructuring assignment is all you’ll need to
know, but there’s a bit more to it that you’ll probably find useful.

Array destructuring assignment has a very unique use case that makes
it easier to swap the values of two variables. Value swapping is a common
operation in sorting algorithms, and the ECMAScript 5 way of swapping
variables involves a third, temporary variable, as in this example:

// swapping variables in ECMAScript 5
let a = 1,
 b = 2,
 tmp;

tmp = a;
a = b;
b = tmp;

console.log(a); // 2
console.log(b); // 1

The intermediate variable tmp is necessary to swap the values of a and
b. However, using array destructuring assignment, there’s no need for that
extra variable. Here’s how you can swap variables in ECMAScript 6:

// swapping variables in ECMAScript 6
let a = 1,
 b = 2;

[a, b] = [b, a];

console.log(a); // 2
console.log(b); // 1

The array destructuring assignment in this example looks like a mirror
image. The left side of the assignment (before the equal sign) is a destruc-
turing pattern just like those in the other array destructuring examples.
The right side is an array literal that is temporarily created for the swap. The

92 Chapter 5

destructuring happens on the temporary array, which has the values of b
and a copied into its first and second positions. The effect is that the vari-
ables have swapped values.

n o t e Like object destructuring assignment, an error is thrown when the right side of an
array destructured assignment expression evaluates to null or undefined.

Default Values
Array destructuring assignment allows you to specify a default value for any
position in the array, too. The default value is used when the property at the
given position either doesn’t exist or has the value undefined. For example:

let colors = ["red"];

let [firstColor, secondColor = "green"] = colors;

console.log(firstColor); // "red"
console.log(secondColor); // "green"

In this code, the colors array has only one item, so there is nothing for
secondColor to match. Because there is a default value, secondColor is set to
"green" instead of undefined.

Nested Array Destructuring
You can destructure nested arrays in a manner similar to destructuring
nested objects. By inserting another array pattern into the overall pattern,
the destructuring will descend into a nested array, like this:

let colors = ["red", ["green", "lightgreen"], "blue"];

// later

let [firstColor, [secondColor]] = colors;

console.log(firstColor); // "red"
console.log(secondColor); // "green"

Here, the secondColor variable refers to the "green" value inside the
colors array. That item is contained within a second array, so the extra
square brackets around secondColor in the destructuring pattern are neces-
sary. As with objects, you can nest arrays arbitrarily deep.

Rest Items
Chapter 3 introduced rest parameters for functions, and array destructuring
has a similar concept called rest items. Rest items use the ... syntax to assign
the remaining items in an array to a particular variable. Take a look at the
following example.

Destructuring for Easier Data Access 93

let colors = ["red", "green", "blue"];

let [firstColor, ...restColors] = colors;

console.log(firstColor); // "red"
console.log(restColors.length); // 2
console.log(restColors[0]); // "green"
console.log(restColors[1]); // "blue"

The first item in colors is assigned to firstColor, and the rest are assigned
into a new restColors array. Therefore, the restColors array has two items:
"green" and "blue". Rest items are useful for extracting certain items from an
array and keeping the rest available, but there’s another helpful use.

A glaring omission from JavaScript arrays is the ability to easily create a
clone. In ECMAScript 5, developers frequently used the concat() method as
an easy way to clone an array. For example:

// cloning an array in ECMAScript 5
var colors = ["red", "green", "blue"];
var clonedColors = colors.concat();

console.log(clonedColors); // "[red,green,blue]"

Although the concat() method is intended to concatenate two arrays, call-
ing it without an argument returns a clone of the array. In ECMAScript 6,
you can use rest items to achieve the same task through syntax intended to
function that way. It works like this:

// cloning an array in ECMAScript 6
let colors = ["red", "green", "blue"];
let [...clonedColors] = colors;

console.log(clonedColors); // "[red,green,blue]"

In this example, rest items are used to copy values from the colors
array into the clonedColors array. Although it’s a matter of perception as to
whether this technique makes the developer’s intent clearer than using the
concat() method, it’s still a useful approach to be aware of.

n o t e Rest items must be the last entry in the destructured array and cannot be followed by a
comma. Including a comma after rest items is a syntax error.

Mixed Destructuring
You can use object and array destructuring together to create more complex
expressions. By doing so, you’re able to extract just the pieces of information
you want from any mixture of objects and arrays. Consider the following
example.

94 Chapter 5

let node = {
 type: "Identifier",
 name: "foo",
 loc: {
 start: {
 line: 1,
 column: 1
 },
 end: {
 line: 1,
 column: 4
 }
 },
 range: [0, 3]
};

let {
 loc: { start },
 range: [startIndex]
} = node;

console.log(start.line); // 1
console.log(start.column); // 1
console.log(startIndex); // 0

This code extracts node.loc.start and node.range[0] into start and
startIndex, respectively. Keep in mind that loc: and range: in the destruc-
tured pattern are just locations that correspond to properties in the node
object. There is no part of node that cannot be extracted using destructur-
ing when you use a mix of object and array destructuring. This approach is
particularly useful for pulling values out of JSON configuration structures
without navigating the entire structure.

Destructured Parameters
Destructuring has one more particularly helpful use case and that is when
passing function arguments. When a JavaScript function takes a large num-
ber of optional parameters, one common pattern is to create an options
object whose properties specify the additional parameters, like this:

// properties on options represent additional parameters
function setCookie(name, value, options) {

 options = options || {};

 let secure = options.secure,
 path = options.path,
 domain = options.domain,
 expires = options.expires;

Destructuring for Easier Data Access 95

 // code to set the cookie
}

// third argument maps to options
setCookie("type", "js", {
 secure: true,
 expires: 60000
});

Many JavaScript libraries contain setCookie() functions that look similar
to this one. In this function, the name and value arguments are required,
but secure, path, domain, and expires are not. And because there is no prior-
ity order for the other data, it’s efficient to just have an options object with
named properties rather than list extra named parameters. This approach
works, but now you can’t tell what input the function expects just by looking
at the function definition: you need to read the function body.

Destructured parameters offer an alternative that makes it clearer what
arguments a function expects. A destructured parameter uses an object or
array destructuring pattern in place of a named parameter. To see this in
action, look at this rewritten version of the setCookie() function from the
previous example:

function setCookie(name, value, { secure, path, domain, expires }) {

 // code to set the cookie
}

setCookie("type", "js", {
 secure: true,
 expires: 60000
});

This function behaves similarly to the previous example, but the third
argument now uses destructuring to pull out the necessary data. The param-
eters outside the destructured parameter are clearly expected, and it’s also
clear to someone using setCookie() what options are available in terms of
extra arguments. And of course, if the third argument is required, the values
it should contain are crystal clear. The destructured parameters also act like
regular parameters in that they are set to undefined if they’re not passed.

n o t e Destructured parameters have all the capabilities of destructuring that you’ve learned
so far in this chapter. You can use default values, mix object and array patterns, and
use variable names that differ from the properties you’re reading from.

Destructured Parameters Are Required
One quirk of using destructured parameters is that, by default, an error is
thrown when they’re not provided in a function call. For instance, the fol-
lowing call to the setCookie() function from the previous example throws an
error.

96 Chapter 5

// error!
setCookie("type", "js");

The missing third argument evaluates to undefined as expected, causing
an error because destructured parameters are just a shorthand for destruc-
tured declaration. When the setCookie() function is called, the JavaScript
engine actually does this:

function setCookie(name, value, options) {

 let { secure, path, domain, expires } = options;

 // code to set the cookie
}

Because destructuring throws an error when the right side expression
evaluates to null or undefined, it also throws an error when the third argu-
ment isn’t passed to the setCookie() function.

If you want the destructured parameter to be required, this behavior
isn’t all that troubling. But if you want the destructured parameter to be
optional, you can work around this behavior by providing a default value
for the destructured parameter, like this:

function setCookie(name, value, { secure, path, domain, expires } = {}) {

 // empty
}

This example provides a new object as the default value for the third
parameter. Providing a default value for the destructured parameter means
that secure, path, domain, and expires will all be undefined if the third argu-
ment to setCookie() isn’t provided, and no error will be thrown.

Default Values for Destructured Parameters
You can specify destructured default values for destructured parameters
just as you would in destructured assignment. Just add the equal sign after
the parameter and specify the default value. For example:

function setCookie(name, value,
 {
 secure = false,
 path = "/",
 domain = "example.com",
 expires = new Date(Date.now() + 360000000)
 } = {}
) {

 // empty
}

Destructuring for Easier Data Access 97

Each property in the destructured parameter has a default value in
this code, so you can avoid checking to see if a given property has been
included in order to use the correct value. Also, the entire destructured
parameter has a default value of an empty object, making the parameter
optional. This does make the function declaration look a bit more compli-
cated than usual, but that’s a small price to pay for ensuring each argument
has a usable value.

Summary
Destructuring makes working with objects and arrays in JavaScript easier.
Using the familiar object literal and array literal syntax, you can dissect
data structures to get at the information you’re interested in. Object pat-
terns allow you to extract data from objects, and array patterns let you
extract data from arrays.

Both object and array destructuring can specify default values for any
property or item that is undefined, and both throw errors when the right side
of an assignment evaluates to null or undefined. You can also navigate deeply
nested data structures with object and array destructuring, descending to
any arbitrary depth.

Destructuring declarations use var, let, or const to create variables and
must always have an initializer. Destructuring assignments are used in place
of other assignments and allow you to destructure into object properties
and already existing variables.

Destructured parameters use the destructuring syntax to make options
objects more transparent when used as function parameters. You can list
all the actual data you’re interested in along with other named parameters.
Destructured parameters can be array patterns, object patterns, or a mix-
ture, and you can use all the features of destructuring.

6
S y m b o l S a n d

S y m b o l P r o P e r t i e S

ECMAScript 6 introduces symbols as a
primitive type. (The language already

had five primitive types: strings, numbers,
Booleans, null, and undefined.) Symbols began

as a way to create private object members, a feature
JavaScript developers wanted for a long time. Before
symbols, any property with a string name was easy to access regardless of
the obscurity of the name, and the private names feature was meant to let
developers create non-string property names. That way, normal techniques
for detecting these private names wouldn’t work.

The private names proposal eventually evolved into ECMAScript 6 sym-
bols, and this chapter teaches you how to use symbols effectively. Although

100 Chapter 6

symbols do add non-string values for property names, the goal of privacy
was dropped. Instead, symbol properties are categorized separately from
other object properties.

Creating Symbols
Symbols are unique among JavaScript primitives in that they don’t have a
literal form, like true for Booleans or 42 for numbers. You can create a sym-
bol using the global Symbol function, as in this example:

let firstName = Symbol();
let person = {};

person[firstName] = "Nicholas";
console.log(person[firstName]); // "Nicholas"

Here, the symbol firstName is created and used to assign a new property
on the person object. When you use a symbol to assign a property, you must
use that symbol each time you want to access the property. Be sure to name
the symbol variable appropriately, so you can easily tell what the symbol
represents.

n o t e Because symbols are primitive values, calling new Symbol() throws an error. You can
create an instance of Symbol via new Object(yourSymbol) as well, but it’s unclear
when this capability would be useful.

The Symbol function also accepts a description of the symbol as an
optional argument. You cannot use the description to access the property,
but I recommend always providing a description to make reading and
debugging symbols easier. For example:

let firstName = Symbol("first name");
let person = {};

person[firstName] = "Nicholas";

console.log("first name" in person); // false
console.log(person[firstName]); // "Nicholas"
console.log(firstName); // "Symbol(first name)"

A symbol’s description is stored internally in the [[Description]]
property. This property is read whenever the symbol’s toString() method
is called either explicitly or implicitly. The firstName symbol’s toString()
method is called implicitly by console.log() in this example, so the
description is printed to the log. It is not otherwise possible to access
[[Description]] directly from code.

Symbols and Symbol Properties 101

Using Symbols
You can use symbols anywhere you would use a computed property name.
You’ve already seen bracket notation used with symbols in this chapter, but
you can use symbols in computed object literal property names as well as
with Object.defineProperty() and Object.defineProperties() calls:

let firstName = Symbol("first name");

// use a computed object literal property
let person = {
 [firstName]: "Nicholas"
};

// make the property read only
Object.defineProperty(person, firstName, { writable: false });

let lastName = Symbol("last name");

Object.defineProperties(person, {
 [lastName]: {
 value: "Zakas",
 writable: false
 }
});

console.log(person[firstName]); // "Nicholas"
console.log(person[lastName]); // "Zakas"

This example first uses a computed object literal property to
create the firstName symbol property. The property is created as non-
enumerable, which is different from computed properties created using

ide n t if y ing Sy mbol S

Because symbols are primitive values, you can use the typeof operator to deter-
mine whether a variable contains a symbol. ECMAScript 6 extends typeof to
return "symbol" when used on a symbol. For example:

let symbol = Symbol("test symbol");
console.log(typeof symbol); // "symbol"

Although other indirect ways of determining whether a variable is a
symbol are available, the typeof operator is the most accurate and preferred
technique.

102 Chapter 6

non-symbol names. The following line then sets the property to be read-
only. Later, a read-only lastName symbol property is created using the
Object.defineProperties() method. A computed object literal property
is used once again, but this time it’s part of the second argument to the
Object.defineProperties() call.

Although you can use symbols in any place that computed property
names are allowed, you’ll need to have a system for sharing these symbols
between different pieces of code to use them effectively.

Sharing Symbols
At times, you might want different parts of your code to share symbols. For
example, suppose you have two different object types in your application
that should use the same symbol property to represent a unique identifier.
Keeping track of symbols across files or large codebases can be difficult and
error prone. For these reasons, ECMAScript 6 provides a global symbol reg-
istry that you can access at any time.

When you want to create a symbol to be shared, use the Symbol.for()
method instead of calling the Symbol() method. The Symbol.for() method
accepts a single parameter, which is a string identifier for the symbol you
want to create. That parameter is also used as the symbol’s description, as
shown in this example:

let uid = Symbol.for("uid");
let object = {};

object[uid] = "12345";

console.log(object[uid]); // "12345"
console.log(uid); // "Symbol(uid)"

The Symbol.for() method first searches the global symbol registry to see
whether a symbol with the key "uid" exists. If so, the method returns the
existing symbol. If no such symbol exists, a new symbol is created and regis-
tered to the global symbol registry using the specified key. The new symbol
is then returned.

Subsequent calls to Symbol.for() using the same key will return the same
symbol, as follows:

let uid = Symbol.for("uid");
let object = {
 [uid]: "12345"
};

console.log(object[uid]); // "12345"
console.log(uid); // "Symbol(uid)"

let uid2 = Symbol.for("uid");

Symbols and Symbol Properties 103

console.log(uid === uid2); // true
console.log(object[uid2]); // "12345"
console.log(uid2); // "Symbol(uid)"

In this example, uid and uid2 contain the same symbol and can be used
interchangeably. The first call to Symbol.for() creates the symbol, and the
second call retrieves the symbol from the global symbol registry.

Another unique aspect of shared symbols is that you can retrieve the
key associated with a symbol in the global symbol registry by calling the
Symbol.keyFor() method. For example:

let uid = Symbol.for("uid");
console.log(Symbol.keyFor(uid)); // "uid"

let uid2 = Symbol.for("uid");
console.log(Symbol.keyFor(uid2)); // "uid"

let uid3 = Symbol("uid");
console.log(Symbol.keyFor(uid3)); // undefined

Notice that both uid and uid2 return the "uid" key. The symbol uid3
doesn’t exist in the global symbol registry, so it has no key associated with it
and Symbol.keyFor() returns undefined.

n o t e The global symbol registry is a shared environment, just like the global scope. That
means you can’t make assumptions about what is or is not already present in that
environment. Use namespacing of symbol keys to reduce the likelihood of naming colli-
sions when you’re using third-party components. For example, jQuery code might use
"jquery." to prefix all keys for keys like "jquery.element" or similar keys.

Symbol Coercion
Type coercion is a significant part of JavaScript, and there’s a lot of flexibility
in the language’s capability to coerce one data type into another. However,
symbols are quite inflexible when it comes to coercion because other types
lack a logical equivalent to a symbol. Specifically, symbols cannot be coerced
into strings or numbers to prevent them from being accidentally used as
properties that would otherwise be expected to behave as symbols.

The examples in this chapter have used console.log() to indicate the
output for symbols, which works because console.log() calls String() on sym-
bols to create useful output. You can use String() directly to get the same
result. For instance:

let uid = Symbol.for("uid"),
 desc = String(uid);

console.log(desc); // "Symbol(uid)"

104 Chapter 6

The String() function calls uid.toString(), which returns the symbol’s
string description. However, if you try to concatenate the symbol directly
with a string, an error is thrown:

var uid = Symbol.for("uid"),
 desc = uid + ""; // error!

Concatenating uid with an empty string requires that uid first be
coerced into a string. An error is thrown when the coercion is detected,
preventing its use in this manner.

Similarly, you cannot coerce a symbol to a number. All mathematical
operators cause an error when they’re applied to a symbol. For example:

var uid = Symbol.for("uid"),
 sum = uid / 1; // error!

This example attempts to divide the symbol by 1, which causes an error.
Errors are thrown regardless of the mathematical operator used (logical
operators do not throw an error because all symbols are considered equiva-
lent to true, just like any other non-empty value in JavaScript).

Retrieving Symbol Properties
The Object.keys() and Object.getOwnPropertyNames() methods can retrieve
all property names in an object. The former method returns all enumer-
able property names, and the latter returns all properties regardless of enu-
merability. However, neither method returns symbol properties to preserve
their ECMAScript 5 functionality. Instead, the Object.getOwnPropertySymbols()
method was added in ECMAScript 6 to allow you to retrieve property sym-
bols from an object.

The return value of Object.getOwnPropertySymbols() is an array of own
property symbols, as shown here:

let uid = Symbol.for("uid");
let object = {
 [uid]: "12345"
};

let symbols = Object.getOwnPropertySymbols(object);

console.log(symbols.length); // 1
console.log(symbols[0]); // "Symbol(uid)"
console.log(object[symbols[0]]); // "12345"

In this code, object has a single symbol property called uid. The array
that Object.getOwnPropertySymbols() returns is an array containing just that
symbol.

Symbols and Symbol Properties 105

All objects start with zero own symbol properties, but objects can
inherit symbol properties from their prototypes. ECMAScript 6 predefines
several such properties that are implemented using well-known symbols.

Exposing Internal Operations with Well-Known Symbols
A central theme for ECMAScript 5 was exposing and defining some of the
“magic” parts of JavaScript, the parts that developers couldn’t emulate at
the time. ECMAScript 6 carries on that tradition by exposing even more
of the previously internal logic of the language, primarily by using symbol
proto type properties to define the basic behavior of certain objects.

ECMAScript 6 has predefined symbols called well-known symbols that
represent common behaviors in JavaScript that were previously considered
internal-only operations. Each well-known symbol is represented by a prop-
erty on the Symbol object, such as Symbol.match.

The well-known symbols are:

Symbol.hasInstance A method used by instanceof to determine an
object’s inheritance

Symbol.isConcatSpreadable A Boolean value indicating that
Array.prototype.concat() should flatten the collection’s elements if
the collection is passed as a parameter to Array.prototype.concat()

Symbol.iterator A method that returns an iterator (covered in
Chapter 8)

Symbol.match A method used by String.prototype.match() to compare
strings

Symbol.replace A method used by String.prototype.replace() to replace
substrings

Symbol.search A method used by String.prototype.search() to locate
substrings

Symbol.species The constructor for making derived classes (covered in
Chapter 9)

Symbol.split A method used by String.prototype.split() to split up
strings

Symbol.toPrimitive A method that returns a primitive value representa-
tion of an object

Symbol.toStringTag A string used by Object.prototype.toString() to create
an object description

Symbol.unscopables An object whose properties are the names of object
properties that should not be included in a with statement

Some commonly used well-known symbols are discussed in the follow-
ing sections; others are discussed throughout the rest of the book to keep
them in the correct context.

106 Chapter 6

Overwriting a method defined with a well-known symbol changes an
ordinary object to an exotic object because some internal default behavior
is changed. There is no practical impact on your code as a result; the way
the specification describes the object just changes.

The Symbol.hasInstance Method
Every function has a Symbol.hasInstance method that determines whether
or not a given object is an instance of that function. The method is defined
on Function.prototype so all functions inherit the default behavior for the
instanceof property. The Symbol.hasInstance property is defined as non-
writable and nonconfigurable as well as nonenumerable to ensure it
doesn’t get overwritten by mistake.

The Symbol.hasInstance method accepts a single argument: the value to
check. It returns true if the value passed is an instance of the function. To
understand how Symbol.hasInstance works, consider the following:

obj instanceof Array;

This code is equivalent to the following:

Array[Symbol.hasInstance](obj);

ECMAScript 6 essentially redefined the instanceof operator as short-
hand syntax for this method call. And now that a method call is involved,
you can actually change how instanceof works.

For instance, suppose you want to define a function that claims no
object as an instance. You can do so by hardcoding the return value of
Symbol.hasInstance to false, such as:

function MyObject() {
 // empty
}

Object.defineProperty(MyObject, Symbol.hasInstance, {
 value: function(v) {
 return false;
 }
});

let obj = new MyObject();

console.log(obj instanceof MyObject); // false

You must use Object.defineProperty() to overwrite a nonwritable prop-
erty, so this example uses that method to overwrite the Symbol.hasInstance
method with a new function. The new function always returns false, so even
though obj is actually an instance of the MyObject class, the instanceof opera-
tor returns false after the Object.defineProperty() call.

Symbols and Symbol Properties 107

Of course, you can also inspect the value and decide whether or not
it should be considered an instance based on any arbitrary condition. For
instance, maybe numbers with values between 1 and 100 should be con-
sidered instances of a special number type. To achieve that behavior, you
might write code like this:

function SpecialNumber() {
 // empty
}

Object.defineProperty(SpecialNumber, Symbol.hasInstance, {
 value: function(v) {
 return (v instanceof Number) && (v >=1 && v <= 100);
 }
});

var two = new Number(2),
 zero = new Number(0);

console.log(two instanceof SpecialNumber); // true
console.log(zero instanceof SpecialNumber); // false

This code defines a Symbol.hasInstance method that returns true if the
value is an instance of Number and also has a value between 1 and 100. Thus,
SpecialNumber will claim two as an instance, even though no directly defined
relationship exists between the SpecialNumber function and the two variable.
Note that the left operand to instanceof must be an object to trigger the
Symbol.hasInstance call, because nonobjects cause instanceof to simply return
false all the time.

n o t e You can also overwrite the default Symbol.hasInstance property for all built-in func-
tions, such as the Date and Error functions. However, this isn’t recommended because
the effects on your code can be unexpected and confusing. It’s best to only overwrite
Symbol.hasInstance on your own functions and only when necessary.

The Symbol.isConcatSpreadable Property
JavaScript arrays’ concat() method is designed to concatenate two arrays
together. Here’s how to use that method:

let colors1 = ["red", "green"],
 colors2 = colors1.concat(["blue", "black"]);

console.log(colors2.length); // 4
console.log(colors2); // ["red","green","blue","black"]

This code concatenates a new array to the end of colors1 and creates
colors2, a single array with all items from both arrays. However, the concat()

108 Chapter 6

method can also accept nonarray arguments; in that case, those arguments
are simply added to the end of the array. For example:

let colors1 = ["red", "green"],
 colors2 = colors1.concat(["blue", "black"], "brown");

console.log(colors2.length); // 5
console.log(colors2); // ["red","green","blue","black","brown"]

Here, the extra argument "brown" is passed to concat() and becomes the
fifth item in the colors2 array. Why is an array argument treated differently
than a string argument? The JavaScript specification states that arrays are
automatically split into their individual items and all other types are not.
Prior to ECMAScript 6, there was no way to adjust this behavior.

The Symbol.isConcatSpreadable property is a Boolean value, which indi-
cates that an object has a length property and numeric keys, and that its
numeric property values should be added individually to the result of
a concat() call. Unlike other well-known symbols, this symbol property
doesn’t appear on any standard objects by default. Instead, the symbol
is available as a way to augment how concat() works on certain types of
objects, effectively short-circuiting the default behavior. You can define
any type to behave like arrays do in a concat() call, like this:

let collection = {
 0: "Hello",
 1: "world",
 length: 2,
 [Symbol.isConcatSpreadable]: true
};

let messages = ["Hi"].concat(collection);

console.log(messages.length); // 3
console.log(messages); // ["hi","Hello","world"]

The collection object in this example is set up to look like an array: it
has a length property and two numeric keys. The Symbol.isConcatSpreadable
property is set to true to indicate that the property values should be added
as individual items to an array. When collection is passed to the concat()
method, the resulting array has "Hello" and "world" as separate items after
the "hi" element.

n o t e You can also set Symbol.isConcatSpreadable to false on derived array classes to
prevent items from being separated by concat() calls. See “Inheritance with Derived
Classes” on page 178.

Symbols and Symbol Properties 109

The Symbol.match, Symbol.replace, Symbol.search, and
Symbol.split Properties
Strings and regular expressions have always had a close relationship in
JavaScript. In particular, the string type has several methods that accept
regular expressions as arguments:

match(regex) Determines whether the given string matches a regular
expression

replace(regex, replacement) Replaces regular expression matches with
a replacement

search(regex) Locates a regular expression match inside the string

split(regex) Splits a string into an array on a regular expression match

The way these methods interacted with regular expressions was hidden
from developers prior to ECMAScript 6, leaving no way to mimic regular
expressions using developer-defined objects. ECMAScript 6 defines four
symbols that correspond to these four methods, effectively outsourcing the
native behavior to the RegExp built-in object.

The Symbol.match, Symbol.replace, Symbol.search, and Symbol.split symbols
represent methods on the regular expression argument that should be
called on the first argument to the match() method, the replace() method,
the search() method, and the split() method, respectively. The four symbol
properties are defined on RegExp.prototype as the default implementation
that the string methods should use.

Knowing this, you can create an object to use with the string methods
in a way that is similar to regular expressions. To do so, you can use the fol-
lowing symbol functions in code:

Symbol.match Accepts a string argument and returns an array of
matches, or null if no match is found

Symbol.replace Accepts a string argument and a replacement string,
and returns a string

Symbol.search Accepts a string argument and returns the numeric
index of the match, or −1 if no match is found

Symbol.split Accepts a string argument and returns an array contain-
ing pieces of the string split on the match

The ability to define these properties on an object allows you to create
objects that implement pattern matching without regular expressions and
use those objects in methods that expect regular expressions. Here’s an
example that shows these symbols in action:

// effectively equivalent to /^.{10}$/
let hasLengthOf10 = {
 [Symbol.match]: function(value) {
 return value.length === 10 ? [value.substring(0, 10)] : null;
 },

110 Chapter 6

 [Symbol.replace]: function(value, replacement) {
 return value.length === 10 ? replacement + value.substring(10) : value;
 },
 [Symbol.search]: function(value) {
 return value.length === 10 ? 0 : -1;
 },
 [Symbol.split]: function(value) {
 return value.length === 10 ? ["", ""] : [value];
 }
};

let message1 = "Hello world", // 11 characters
 message2 = "Hello John"; // 10 characters

let match1 = message1.match(hasLengthOf10),
 match2 = message2.match(hasLengthOf10);

console.log(match1); // null
console.log(match2); // ["Hello John"]

let replace1 = message1.replace(hasLengthOf10),
 replace2 = message2.replace(hasLengthOf10);

console.log(replace1); // "Hello world"
console.log(replace2); // "Hello John"

let search1 = message1.search(hasLengthOf10),
 search2 = message2.search(hasLengthOf10);

console.log(search1); // -1
console.log(search2); // 0

let split1 = message1.split(hasLengthOf10),
 split2 = message2.split(hasLengthOf10);

console.log(split1); // ["Hello world"]
console.log(split2); // ["", ""]

The hasLengthOf10 object is intended to work like a regular expression
that matches whenever the string length is exactly 10. Each of the four
methods on hasLengthOf10 is implemented using the appropriate symbol, and
then the corresponding methods on two strings are called. The first string,
message1, has 11 characters and will not match; the second string, message2,
has 10 characters and will match. Despite not being a regular expression,
hasLengthOf10 is passed to each string method and used correctly due to the
additional methods.

Although this is a simple example, the ability to perform more complex
matches than are currently possible with regular expressions opens lots of
possibilities for custom pattern matchers.

Symbols and Symbol Properties 111

The Symbol.toPrimitive Method
JavaScript frequently attempts to convert objects into primitive values
implicitly when you apply certain operations. For instance, when you
compare a string to an object using the double equals (==) operator, the
object is converted into a primitive value before comparing. Exactly what
primitive value should be used was previously an internal operation, but
ECMAScript 6 exposes that value (making it changeable) through the
Symbol.toPrimitive method.

The Symbol.toPrimitive method is defined on the prototype of each stan-
dard type and prescribes what should happen when the object is converted
into a primitive. When a primitive conversion is needed, Symbol.toPrimitive
is called with a single argument, referred to as hint in the specification.
The hint argument is one of three string values. If "number" is passed,
Symbol.toPrimitive should return a number. If "string" is passed, a string
should be returned, and if "default" is passed, the operation has no prefer-
ence as to the type.

For most standard objects, number mode has the following behaviors,
which are listed in order by priority:

1. Call the valueOf() method, and if the result is a primitive value, return it.

2. Otherwise, call the toString() method, and if the result is a primitive
value, return it.

3. Otherwise, throw an error.

Similarly, for most standard objects, the behaviors of string mode have
the following priority:

1. Call the toString() method, and if the result is a primitive value, return it.

2. Otherwise, call the valueOf() method, and if the result is a primitive
value, return it.

3. Otherwise, throw an error.

In many cases, standard objects treat default mode as equivalent to
number mode (except for Date, which treats default mode as equivalent to
string mode). By defining a Symbol.toPrimitive method, you can override
these default coercion behaviors.

n o t e Default mode is used only for the == operator, the + operator, and when passing a
single argument to the Date constructor. Most operations use string or number mode.

To override the default conversion behaviors, use Symbol.toPrimitive and
assign a function as its value. For example:

function Temperature(degrees) {
 this.degrees = degrees;
}

112 Chapter 6

Temperature.prototype[Symbol.toPrimitive] = function(hint) {

 switch (hint) {
 case "string":
 return this.degrees + "\u00b0"; // degrees symbol

 case "number":
 return this.degrees;

 case "default":
 return this.degrees + " degrees";
 }
};

var freezing = new Temperature(32);

console.log(freezing + "!"); // "32 degrees!"
console.log(freezing / 2); // 16
console.log(String(freezing)); // "32°"

This script defines a Temperature constructor and overrides the default
Symbol.toPrimitive method on the prototype. A different value is returned
depending on whether the hint argument indicates string, number, or
default mode (the hint argument is filled in by the JavaScript engine). In
string mode, the Temperature() function returns the temperature with the
Unicode degrees symbol. In number mode, it returns just the numeric
value, and in default mode, it appends the word degrees after the number.

Each of the log statements triggers a different hint argument value.
The + operator triggers default mode by setting hint to "default", the / oper-
ator triggers number mode by setting hint to "number", and the String() func-
tion triggers string mode by setting hint to "string". Returning different
values for all three modes is possible, but it’s much more common to set the
default mode to be the same as string or number mode.

The Symbol.toStringTag Property
One of the most interesting problems in JavaScript has been the existence
of multiple global execution environments. This occurs in web browsers
when a page includes an iframe, because the page and the iframe each has its
own execution environment. In most cases, this isn’t a problem, because data
can be passed back and forth between the environments with little cause
for concern. The problem arises when you’re trying to identify what type of
object you’re dealing with after the object has been passed between differ-
ent objects.

The canonical example of this issue is passing an array from an iframe
into the page containing the iframe or vice versa. In ECMAScript 6 ter-
minology, the iframe and the containing page each represent a different
realm, which is an execution environment for JavaScript. Each realm has its
own global scope with its own copy of global objects. In whichever realm

Symbols and Symbol Properties 113

the array is created, it is definitely an array. However, when it’s passed to a
different realm, an instanceof Array call returns false because the array was
created with a constructor from a different realm and Array represents the
constructor in the current realm.

A Workaround for the Identification Problem

Faced with the problem of identifying arrays, developers soon found a
good way to do so. They discovered that by calling the standard toString()
method on the object, a predictable string was always returned. Thus, many
JavaScript libraries began including a function like this:

function isArray(value) {
 return Object.prototype.toString.call(value) === "[object Array]";
}

console.log(isArray([])); // true

Although this solution might look a bit roundabout, it worked quite well
for identifying arrays in all browsers. Using the toString() method on arrays
isn’t helpful for identifying an object, because it returns a string representa-
tion of the items the object contains. But using the toString() method on
Object.prototype had a quirk: it included an internally defined name called
[[Class]] in the returned result. Developers could use this method on an
object to retrieve what the JavaScript environment thought the object’s data
type was.

Developers quickly realized that because there was no way to change
this behavior, it was possible to use the same approach to distinguish
between native objects and those created by developers. The most impor-
tant case was the ECMAScript 5 JSON object.

Prior to ECMAScript 5, many developers used Douglas Crockford’s
json2.js, which creates a global JSON object. As browsers started to imple-
ment the JSON global object, figuring out whether the global JSON was pro-
vided by the JavaScript environment or through some other library became
necessary. Using the same technique I showed with the isArray() function,
many developers created functions like this:

function supportsNativeJSON() {
 return typeof JSON !== "undefined" &&
 Object.prototype.toString.call(JSON) === "[object JSON]";
}

The same characteristic of Object.prototype that allowed developers to
identify arrays across iframe boundaries also provided a way to tell if JSON
was the native JSON object or not. A non-native JSON object would return
[object Object], whereas the native version returned [object JSON] instead.
This approach became the de facto standard for identifying native objects.

114 Chapter 6

Defining Object String Tags in ECMAScript 6

ECMAScript 6 redefines the tendency of native objects to reveal their iden-
tity using Object.prototype.toString() through the Symbol.toStringTag symbol.
This symbol represents a property on each object that defines what value
should be produced when Object.prototype.toString.call() is called on it. For
an array, the value that function returns is explained by storing "Array" in
the Symbol.toStringTag property.

Likewise, you can define the Symbol.toStringTag value for your own
objects:

function Person(name) {
 this.name = name;
}

Person.prototype[Symbol.toStringTag] = "Person";

var me = new Person("Nicholas");

console.log(me.toString()); // "[object Person]"
console.log(Object.prototype.toString.call(me)); // "[object Person]"

Here, a Symbol.toStringTag property is defined on Person.prototype
to provide the default behavior for creating a string representation.
Because Person.prototype inherits the Object.prototype.toString() method,
the value returned from Symbol.toStringTag is also used when calling the
me.toString() method. However, you can still define your own toString()
method that provides a different behavior without affecting the use of the
Object.prototype.toString.call() method. Here’s how that might look:

function Person(name) {
 this.name = name;
}

Person.prototype[Symbol.toStringTag] = "Person";

Person.prototype.toString = function() {
 return this.name;
};

var me = new Person("Nicholas");

console.log(me.toString()); // "Nicholas"
console.log(Object.prototype.toString.call(me)); // "[object Person]"

This code defines Person.prototype.toString() to return the value
of the name property. Because Person instances no longer inherit the
Object.prototype.toString() method, calling me.toString() exhibits a
different behavior.

n o t e All objects inherit Symbol.toStringTag from Object.prototype unless otherwise speci-
fied. The string "Object" is the default property value.

Symbols and Symbol Properties 115

There is no restriction on which values you can use for Symbol.toStringTag
on developer-defined objects. For example, nothing prevents you from using
"Array" as the value of the Symbol.toStringTag property, such as:

function Person(name) {
 this.name = name;
}

Person.prototype[Symbol.toStringTag] = "Array";

Person.prototype.toString = function() {
 return this.name;
};

var me = new Person("Nicholas");

console.log(me.toString()); // "Nicholas"
console.log(Object.prototype.toString.call(me)); // "[object Array]"

The result of calling Object.prototype.toString() is "[object Array]" in this
code, which is the same result you’d get from an actual array. This highlights
the fact that Object.prototype.toString() is no longer a completely reliable way
of identifying an object’s type.

Changing the string tag for native objects is also possible. Just assign to
Symbol.toStringTag on the object’s prototype, like this:

Array.prototype[Symbol.toStringTag] = "Magic";

var values = [];

console.log(Object.prototype.toString.call(values)); // "[object Magic]"

Symbol.toStringTag is overwritten for arrays in this example, meaning
the call to Object.prototype.toString() results in "[object Magic]" instead of
"[object Array]". Even though I recommended not changing built-in objects
in this way, there’s nothing in the language that forbids you from doing so.

The Symbol.unscopables Property
The with statement is one of the most controversial parts of JavaScript.
Originally designed to avoid repetitive typing, the with statement was
roundly criticized for making code more difficult to understand, for nega-
tive performance implications, and for being error prone. As a result, the
with statement is not allowed in strict mode; that restriction also affects
classes and modules, which are strict mode by default and have no opt-out
condition.

Although future code will undoubtedly not use the with statement,
ECMAScript 6 still supports with in non-strict mode for backward compat-
ibility and, as such, had to find ways to allow code that does use with to con-
tinue to work properly.

116 Chapter 6

To understand the complexity of this task, consider the following code:

var values = [1, 2, 3],
 colors = ["red", "green", "blue"],
 color = "black";

with(colors) {
 push(color);
 push(...values);
}

console.log(colors); // ["red", "green", "blue", "black", 1, 2, 3]

In this example, the two calls to push() inside the with statement are
equivalent to colors.push() because the with statement added push as a local
binding. The color reference refers to the variable created outside the with
statement, as does the values reference.

But ECMAScript 6 added a values method to arrays. (The values()
method is discussed in detail in Chapter 8.) As a result, in an ECMAScript 6
environment, the values reference inside the with statement should refer not
to the local variable values, but to the array’s values method, which would
break the code. This is why the Symbol.unscopables symbol exists.

The Symbol.unscopables symbol is used on Array.prototype to indicate
which properties shouldn’t create bindings inside a with statement. When
present, Symbol.unscopables is an object whose keys are the identifiers to
omit from with statement bindings and whose values are true to enforce the
block. Here’s the default Symbol.unscopables property for arrays:

// built into ECMAScript 6 by default
Array.prototype[Symbol.unscopables] = Object.assign(Object.create(null), {
 copyWithin: true,
 entries: true,
 fill: true,
 find: true,
 findIndex: true,
 keys: true,
 values: true
});

The Symbol.unscopables object has a null prototype, which is created
by the Object.create(null) call, and contains all the new array methods in
ECMAScript 6. (These methods are covered in detail in Chapter 8 and
Chapter 10.) Bindings for these methods are not created inside a with state-
ment, allowing old code to continue working without any problem.

In general, you shouldn’t need to define Symbol.unscopables for your
objects unless you use the with statement and are making changes to an
existing object in your code base.

Symbols and Symbol Properties 117

Summary
Symbols are a new type of primitive value in JavaScript and are used to
create nonenumerable properties that can’t be accessed without referenc-
ing the symbol. Although not truly private, these properties are harder to
accidentally change or overwrite and are therefore suitable for functionality
that needs a level of protection from developers.

You can provide descriptions for symbols that allow you to identify sym-
bol values easier. A global symbol registry allows you to use shared symbols
in different parts of code by using the same description. Thus, the same
symbol can be used for the same reason in multiple places.

Methods like Object.keys() or Object.getOwnPropertyNames() don’t return
symbols, so a new method called Object.getOwnPropertySymbols() was added in
ECMAScript 6 to allow you to retrieve symbol properties. You can still make
changes to symbol properties by calling the Object.defineProperty() and
Object.defineProperties() methods.

Well-known symbols define previously internal-only functionality for
standard objects and use globally available symbol constants, such as the
Symbol.hasInstance property. These symbols use the prefix Symbol. in the
specification and allow developers to modify standard object behavior in
a variety of ways.

7
S e t S a n d M a p S

For most of its history, JavaScript had only
one type of collection, which was repre-

sented by the Array type. (Although some
developers may argue that all nonarray objects

are just collections of key-value pairs, their intended
use was originally quite different from arrays.) Arrays
in JavaScript are used just like arrays in other languages, but before ECMA-
Script 6, the lack of other collection options meant arrays were often used
as queues and stacks as well. Because arrays use only numeric indexes,
developers used nonarray objects whenever a nonnumeric index was neces-
sary. That technique led to custom implementations of sets and maps using
nonarray objects.

A set is a list of values that cannot contain duplicates. You typically don’t
access individual items in a set like you would items in an array; instead,
it’s much more common to just check a set to see if a value is present. A
map is a collection of keys that correspond to specific values. Each item in

120 Chapter 7

a map stores two pieces of data, and values are retrieved by specifying the
key to read from. Maps are frequently used as caches for storing data that
is quickly retrieved at a later time. Although ECMAScript 5 didn’t formally
have sets and maps, developers worked around this limitation using non-
array objects, too.

ECMAScript 6 added sets and maps to JavaScript, and this chapter dis-
cusses everything you need to know about these two collection types. First,
I’ll discuss the workarounds developers used to implement sets and maps
before ECMAScript 6, and why those implementations were problematic.
Then I’ll cover how sets and maps work in ECMAScript 6.

Sets and Maps in ECMAScript 5
In ECMAScript 5, developers mimicked sets and maps by using object prop-
erties, like this:

var set = Object.create(null);

set.foo = true;

// checking for existence
if (set.foo) {
 // code to execute
}

The set variable in this example is an object with a null prototype,
ensuring no inherited properties are on the object. Using object properties
as unique values to be checked is a common approach in ECMAScript 5.
When a property is added to the set object, it is set to true so conditional
statements (such as the if statement in this example) can easily check
whether the value is present.

The only real difference between an object used as a set and an object
used as a map is the value being stored. For instance, this example uses an
object as a map:

var map = Object.create(null);
map.foo = "bar";

// retrieving a value
var value = map.foo;

console.log(value); // "bar"

This code stores a string value "bar" under the key foo. Unlike sets,
maps are mostly used to retrieve information rather than just to check for
the key’s existence.

Sets and Maps 121

Problems with Workarounds
Using objects as sets and maps works okay in simple situations, but the
approach can get more complicated when you run into the limitations
of object properties. For example, because all object properties must
be strings, you must be certain no two keys evaluate to the same string.
Consider the following:

var map = Object.create(null);
map[5] = "foo";

console.log(map["5"]); // "foo"

This example assigns the string value "foo" to a numeric key of 5.
Internally, that numeric value is converted to a string, so map["5"] and map[5]
actually reference the same property. That internal conversion can cause
problems when you want to use numbers and strings as keys. Another prob-
lem arises when you use objects as keys, like this:

var map = Object.create(null),
 key1 = {},
 key2 = {};
map[key1] = "foo";

console.log(map[key2]); // "foo"

Here, map[key2] and map[key1] reference the same value. The objects key1
and key2 are converted to strings because object properties must be strings.
Because "[object Object]" is the default string representation for objects,
both key1 and key2 are converted to that string. This can cause errors that
may not be obvious because it’s logical to assume that different object keys
would, in fact, be different.

The conversion to the default string representation makes it difficult to
use objects as keys.

Maps with a key whose value is falsy present their own particular prob-
lem. A falsy value is automatically converted to false when used in situations
in which a Boolean value is required, such as in the condition of an if state-
ment. This conversion alone isn’t a problem, as long as you’re careful in how
you use values. For instance, look at this code:

var map = Object.create(null);

map.count = 1;

// checking for the existence of "count" or for a nonzero value?
if (map.count) {
 // code to execute
}

122 Chapter 7

This example has some ambiguity as to how map.count should be used.
Is the if statement intended to check for the existence of map.count or
whether the value is nonzero? In this case, the code inside the if state-
ment will execute because the value 1 is truthy. However, if map.count is 0
or if map.count doesn’t exist, the code inside the if statement would not be
executed.

These are difficult problems to identify and debug when they occur in
large applications, which is a prime reason that ECMAScript 6 adds sets
and maps to the language.

n o t e JavaScript has the in operator that returns true if a property exists in an object with-
out reading the value of the object. However, the in operator also searches the proto-
type of an object, which makes it safe to use only when an object has a null prototype.
Even so, many developers still incorrectly use code like the preceding example rather
than using in.

Sets in ECMAScript 6
ECMAScript 6 adds a Set type that is an ordered list of values without dupli-
cates. Sets allow fast access to the data they contain, adding a more efficient
manner of tracking discrete values.

Creating Sets and Adding Items
Sets are created using new Set(), and items are added to a set by calling the
add() method. You can see how many items are in a set by checking the size
property:

let set = new Set();
set.add(5);
set.add("5");

console.log(set.size); // 2

Sets don’t coerce values to determine whether they’re the same. That
means a set can contain the number 5 and the string "5" as two separate
items. (Internally, the comparison uses the Object.is() method discussed in
Chapter 4 to determine if two values are the same.) You can also add mul-
tiple objects to the set, and those objects will remain distinct:

let set = new Set(),
 key1 = {},
 key2 = {};

set.add(key1);
set.add(key2);

console.log(set.size); // 2

Sets and Maps 123

Because key1 and key2 are not converted to strings, they count as two
unique items in the set. If they were converted to strings, they would both
be equal to "[object Object]" instead.

If the add() method is called more than once with the same value, all
calls after the first one are effectively ignored:

let set = new Set();
set.add(5);
set.add("5");
set.add(5); // duplicate - this is ignored

console.log(set.size); // 2

When console.log() outputs the size of set, it displays 2 because the sec-
ond 5 wasn’t added. You can also initialize a set using an array, and the Set
constructor will ensure that only unique values are used. For instance:

let set = new Set([1, 2, 3, 4, 5, 5, 5, 5]);
console.log(set.size); // 5

In this example, an array with duplicate values is used to initialize the
set. The number 5 only appears once in the set, even though it appears four
times in the array. This functionality makes converting existing code or
JSON structures to use sets easy.

n o t e The Set constructor actually accepts any iterable object as an argument. Arrays work
because they are iterable by default, as are sets and maps. The Set constructor uses an
iterator to extract values from the argument. Iterables and iterators are discussed in
detail in Chapter 8.

You can test which values are in a set using the has() method, like this:

let set = new Set();
set.add(5);
set.add("5");

console.log(set.has(5)); // true
console.log(set.has(6)); // false

Here, set.has(6) returns false because the set doesn’t have that value.

Removing Items
It’s also possible to remove items from a set. You can remove a single item by
using the delete() method, or you can remove all items from the set by call-
ing the clear() method. This code shows both in action:

let set = new Set();
set.add(5);
set.add("5");

124 Chapter 7

console.log(set.has(5)); // true

set.delete(5);

console.log(set.has(5)); // false
console.log(set.size); // 1

set.clear();

console.log(set.has("5")); // false
console.log(set.size); // 0

After the delete() call, only 5 is gone; after the clear() method executes,
set is empty.

Sets are a very easy mechanism for tracking unique ordered values.
However, what if you want to add items to a set and then perform an opera-
tion on each item? That’s where the forEach() method comes in.

The forEach() Method for Sets
If you’re used to working with arrays, you may already be familiar with the
forEach() method. ECMAScript 5 added forEach() to arrays to simplify work-
ing on each item in an array without setting up a for loop. The method
proved popular among developers, so the same method is available on sets
and works the same way.

The forEach() method is passed a callback function that accepts three
arguments:

•	 The value from the next position in the set

•	 The same value as the first argument

•	 The set from which the value is read

The strange difference between the set version of forEach() and the
array version is that the first and second arguments to the callback function
are the same value in the set version. Although this might look like a mis-
take, there’s a good reason for the behavior.

The other objects that have forEach() methods (arrays and maps) pass
three arguments to their callback functions. The first two arguments for
arrays and maps are the value and the key (the numeric index for arrays).

Sets don’t have keys, however. The people behind the ECMAScript 6
standard could have made the callback function in the set version of forEach()
accept two arguments, but that would have made it different from the other
two. Instead, they found a way to keep the callback function the same and
accept three arguments: each value in a set is considered to be the key and
the value. As such, the first and second argument are always the same in
forEach() on sets to keep this functionality consistent with the other forEach()
methods on arrays and maps.

Sets and Maps 125

Other than the difference in arguments, using forEach() is basically the
same for a set as it is for an array. The following code shows the method
at work:

let set = new Set([1, 2]);

set.forEach(function(value, key, ownerSet) {
 console.log(key + " " + value);
 console.log(ownerSet === set);
});

This code iterates over each item in the set and outputs the values
passed to the forEach() callback function. Each time the callback function
executes, key and value are the same, and ownerSet is always equal to set. The
output is:

1 1
true
2 2
true

Also the same as arrays, you can pass a this value as the second argu-
ment to forEach() if you need to use this in your callback function:

let set = new Set([1, 2]);

let processor = {
 output(value) {
 console.log(value);
 },
 process(dataSet) {
 dataSet.forEach(function(value) {
 this.output(value);
 }, this);
 }
};

processor.process(set);

In this example, the processor.process() method calls forEach() on the
set and passes this as the this value for the callback. That’s necessary so
this.output() will correctly resolve to the processor.output() method. The
forEach() callback function only uses the first argument, value, so the others
are omitted. You can also use an arrow function to get the same effect with-
out passing the second argument:

let set = new Set([1, 2]);

let processor = {
 output(value) {
 console.log(value);
 },

126 Chapter 7

 process(dataSet) {
 dataSet.forEach(value => this.output(value));
 }
};

processor.process(set);

The arrow function in this example reads this from the contain-
ing process() function, so it will correctly resolve this.output() to a
processor.output() call.

Keep in mind that although sets are great for tracking values and
forEach() lets you work on each item sequentially, you can’t directly access
an item by index like you can with an array. If you need to do so, the best
option is to convert the set to an array.

Converting a Set to an Array
Converting an array to a set is easy because you can pass the array to the
Set constructor; converting a set back to an array is also easy if you use the
spread operator (...). Chapter 3 introduced the spread operator as a way to
split items in an array into separate function parameters. The spread opera-
tor can convert iterable objects, such as sets, to arrays, too. For example:

let set = new Set([1, 2, 3, 3, 3, 4, 5]),
 array = [...set];

console.log(array); // [1,2,3,4,5]

Here, a set is initially loaded with an array that contains duplicates. The
set removes the duplicates, and then the items are placed into a new array
using the spread operator. The set still contains the same items (1, 2, 3, 4,
and 5) it received when it was created. They’ve just been copied to a new
array.

This approach is useful when you already have an array and want to
create an array without duplicates, as in this example:

function eliminateDuplicates(items) {
 return [...new Set(items)];
}

let numbers = [1, 2, 3, 3, 3, 4, 5],
 noDuplicates = eliminateDuplicates(numbers);

console.log(noDuplicates); // [1,2,3,4,5]

In the eliminateDuplicates() function, the set is just a temporary inter-
mediary used to filter out duplicate values before creating a new array that
has no duplicates.

Sets and Maps 127

Weak Sets
The Set type could be called a strong set because of the way it stores object
references. Storing an object in an instance of Set is effectively the same as
storing that object inside a variable. As long as a reference to that Set instance
exists, the object cannot be garbage-collected to free memory. For example:

let set = new Set(),
 key = {};

set.add(key);
console.log(set.size); // 1

// eliminate original reference
key = null;

console.log(set.size); // 1

// get the original reference back
key = [...set][0];

In this example, setting key to null clears one reference of the key
object, but another remains inside set. You can still retrieve key by convert-
ing the set to an array using the spread operator and accessing the first
item. That result works fine for most programs, but sometimes it’s best for
references in a set to disappear when all other references disappear. For
instance, if your JavaScript code is running in a web page and needs to keep
track of DOM elements that might be removed by another script, you don’t
want your code holding onto the last reference to a DOM element. (That
situation is called a memory leak.)

To address such issues, ECMAScript 6 also includes weak sets, which
only store weak object references and cannot store primitive values. A
weak reference to an object doesn’t prevent garbage collection if it’s the only
remaining reference.

Creating Weak Sets

Weak sets are created using the WeakSet constructor and have an add()
method, a has() method, and a delete() method. Here’s an example that
uses all three:

let set = new WeakSet(),
 key = {};

// add the object to the set
set.add(key);

console.log(set.has(key)); // true

set.delete(key);

console.log(set.has(key)); // false

128 Chapter 7

Using a weak set is a lot like using a regular set. You can add, remove,
and check for references in the weak set. You can also seed a weak set with
values by passing an iterable to the constructor:

let key1 = {},
 key2 = {},
 set = new WeakSet([key1, key2]);

console.log(set.has(key1)); // true
console.log(set.has(key2)); // true

In this example, an array is passed to the WeakSet constructor. Because
this array contains two objects, those objects are added into the weak set.
Keep in mind that an error will be thrown if the array contains any non-
object values, because WeakSet can’t accept primitive values.

Key Differences Between Set Types

The biggest difference between weak sets and regular sets is that the weak
reference is held to the object value. Here’s an example that demonstrates
this difference:

let set = new WeakSet(),
 key = {};

// add the object to the set
set.add(key);

console.log(set.has(key)); // true

// remove the last strong reference to key (also removes from weak set)
key = null;

After this code executes, the reference to key in the weak set is no
longer accessible. It’s not possible to verify its removal because you would
need a reference to that object to pass to the has() method. This can make
testing weak sets a little confusing, but you can trust that the reference has
been properly removed by the JavaScript engine.

The preceding examples show that weak sets share some characteristics
with regular sets, but there are some key differences:

•	 In a WeakSet instance, the add() method, has() method, and delete()
method all throw an error when passed a nonobject.

•	 Weak sets aren’t iterables and therefore cannot be used in a for-of loop.

•	 Weak sets don’t expose any iterators (such as the keys() and values()
methods), so there is no way to programmatically determine the con-
tents of a weak set.

•	 Weak sets don’t have a forEach() method.

•	 Weak sets don’t have a size property.

Sets and Maps 129

The seemingly limited functionality of weak sets is necessary to prop-
erly handle memory. In general, if you only need to track object references,
you should use a weak set instead of a regular set.

Sets give you a new way to handle lists of values, but they aren’t useful
when you need to associate additional information with those values. That’s
why ECMAScript 6 also adds maps.

Maps in ECMAScript 6
The ECMAScript 6 Map type is an ordered list of key-value pairs, where the
key and the value can be any type. Key equivalence is determined by calling
the Object.is() method, so you can have a key of 5 and a key of "5" because
they’re different types. This is quite different from using object properties
as keys, because object properties always coerce values into strings.

You can add items to maps by calling the set() method and passing it a
key and the value to associate with the key. You can later retrieve a value by
passing the key to the get() method. For example:

let map = new Map();
map.set("title", "Understanding ECMAScript 6");
map.set("year", 2016);

console.log(map.get("title")); // "Understanding ECMAScript 6"
console.log(map.get("year")); // 2016

In this example, two key-value pairs are stored. The "title" key stores a
string, and the "year" key stores a number. The get() method is called later
to retrieve the values for both keys. If either key didn’t exist in the map,
get() would have returned the special value undefined instead of a value.

You can also use objects as keys, which isn’t possible when you’re using
object properties to create a map in the old workaround approach. Here’s
an example:

let map = new Map(),
 key1 = {},
 key2 = {};

map.set(key1, 5);
map.set(key2, 42);

console.log(map.get(key1)); // 5
console.log(map.get(key2)); // 42

This code uses the objects key1 and key2 as keys in the map to store two
different values. Because these keys are not coerced into another form,
each object is considered unique. This allows you to associate additional
data with an object without modifying the object.

130 Chapter 7

Map Methods
Maps share several methods with sets, which is intentional and allows you to
interact with maps and sets in similar ways. These three methods are avail-
able on maps and sets:

has(key) Determines if the given key exists in the map

delete(key) Removes the key and its associated value from the map

clear() Removes all keys and values from the map

Maps also have a size property that indicates how many key-value pairs
it contains. This code uses all three methods and size in different ways:

let map = new Map();
map.set("name", "Nicholas");
map.set("age", 25);

console.log(map.size); // 2

console.log(map.has("name")); // true
console.log(map.get("name")); // "Nicholas"

console.log(map.has("age")); // true
console.log(map.get("age")); // 25

map.delete("name");
console.log(map.has("name")); // false
console.log(map.get("name")); // undefined
console.log(map.size); // 1

map.clear();
console.log(map.has("name")); // false
console.log(map.get("name")); // undefined
console.log(map.has("age")); // false
console.log(map.get("age")); // undefined
console.log(map.size); // 0

As with sets, the size property always contains the number of key-value
pairs in the map. The Map instance in this example starts with the "name" and
"age" keys, so has() returns true when passed either key. After the "name" key
is removed by the delete() method, the has() method returns false when
passed "name", and the size property indicates one less item. The clear()
method then removes the remaining key, as indicated by has() returning
false for both keys and size being 0.

The clear() method is a fast way to remove a lot of data from a map, but
there’s also a way to add a lot of data to a map at one time.

Sets and Maps 131

Map Initialization
Also similar to sets, you can initialize a map with data by passing an array
to the Map constructor. Each item in the array must itself be an array where
the first item is the key and the second is that key’s corresponding value.
Therefore, the entire map is an array of these two-item arrays, for example:

let map = new Map([["name", "Nicholas"], ["age", 25]]);

console.log(map.has("name")); // true
console.log(map.get("name")); // "Nicholas"
console.log(map.has("age")); // true
console.log(map.get("age")); // 25
console.log(map.size); // 2

The keys "name" and "age" are added into map through initialization in
the constructor. Although the array of arrays may look a bit strange, it’s
necessary to accurately represent keys, because keys can be any data type.
Storing the keys in an array is the only way to ensure they aren’t coerced
into another data type before being stored in the map.

The forEach() Method for Maps
The forEach() method for maps is similar to forEach() for sets and arrays in
that it accepts a callback function that receives three arguments:

•	 The value from the next position in the map

•	 The key for that value

•	 The map from which the value is read

These callback arguments more closely match the forEach() behavior
in arrays, where the first argument is the value and the second is the key
(corresponding to a numeric index in arrays). Here’s an example:

let map = new Map([["name", "Nicholas"], ["age", 25]]);

map.forEach(function(value, key, ownerMap) {
 console.log(key + " " + value);
 console.log(ownerMap === map);
});

The forEach() callback function outputs the information that is passed
to it. The value and key are output directly, and ownerMap is compared to map to
show that the values are equivalent. The code outputs the following:

name Nicholas
true
age 25
true

132 Chapter 7

The callback passed to forEach() receives each key-value pair in the
order in which the pairs were inserted into the map. This behavior differs
slightly from calling forEach() on arrays, where the callback receives each
item in order of numeric index.

n o t e You can also provide a second argument to forEach() to specify the this value
inside the callback function. A call like that behaves the same as the set version of
the forEach() method.

Weak Maps
Weak maps are to maps what weak sets are to sets: they’re a way to store
weak object references. In weak maps, every key must be an object (an error
is thrown if you try to use a nonobject key), and those object references are
held weakly so they don’t interfere with garbage collection. When there are
no references to a weak map key outside a weak map, the key-value pair is
removed from the weak map. But only weak map keys, not weak map values,
are weak references. An object stored as a weak map value will prevent gar-
bage collection, even if all other references are removed.

The most useful place to employ weak maps is when you’re creating an
object related to a particular DOM element in a web page. For example,
some JavaScript libraries for web pages maintain one custom object for
every DOM element referenced in the library, and that mapping is stored
in a cache of objects internally.

The difficult part of this approach is determining when a DOM
element no longer exists in the web page so the library can remove its
associated object. Otherwise, the library would hold onto the DOM ele-
ment reference past the reference’s usefulness and cause a memory leak.
Tracking the DOM elements with a weak map would still allow the library
to associate a custom object with every DOM element, and it could auto-
matically destroy any object in the map when that object’s DOM element
no longer exists.

Using Weak Maps

The ECMAScript 6 WeakMap type is an unordered list of key-value pairs,
where a key must be a non-null object and a value can be of any type. The
interface for WeakMap is very similar to that of Map in that set() and get() are
used to add and retrieve data, respectively:

let map = new WeakMap(),
 element = document.querySelector(".element");

map.set(element, "Original");

let value = map.get(element);
console.log(value); // "Original"

Sets and Maps 133

// remove the element
element.parentNode.removeChild(element);
element = null;

// the weak map is empty at this point

In this example, one key-value pair is stored. The element key is a DOM
element used to store a corresponding string value. That value is then
retrieved by passing in the DOM element to the get() method. When the
DOM element is later removed from the document and the variable refer-
encing it is set to null, the data is also removed from the weak map.

Similar to weak sets, there is no way to verify that a weak map is empty,
because it doesn’t have a size property. Because there are no remaining ref-
erences to the key, you can’t retrieve the value by calling the get() method,
either. The weak map has cut off access to the value for that key, and when
the garbage collector runs, the memory occupied by the value will be freed.

Weak Map Initialization

To initialize a weak map, pass an array of arrays to the WeakMap constructor.
Just like initializing a regular map, each array inside the containing array
should have two items: the first item is the non-null object key, and the sec-
ond item is the value (any data type). For example:

let key1 = {},
 key2 = {},
 map = new WeakMap([[key1, "Hello"], [key2, 42]]);

console.log(map.has(key1)); // true
console.log(map.get(key1)); // "Hello"
console.log(map.has(key2)); // true
console.log(map.get(key2)); // 42

The objects key1 and key2 are used as keys in the weak map, and the
get() and has() methods can access them. An error is thrown if the WeakMap
constructor receives a nonobject key in any of the key-value pairs.

Weak Map Methods

Weak maps have only two additional methods available to interact with
key-value pairs. A has() method determines if a given key exists in the map,
and a delete() method removes a specific key-value pair. There is no clear()
method because that would require enumerating keys, and like weak sets,
that isn’t possible with weak maps. This example uses the has() and delete()
methods:

let map = new WeakMap(),
 element = document.querySelector(".element");

map.set(element, "Original");

134 Chapter 7

console.log(map.has(element)); // true
console.log(map.get(element)); // "Original"

map.delete(element);
console.log(map.has(element)); // false
console.log(map.get(element)); // undefined

Here, a DOM element is once again used as the key in a weak map. The
has() method is useful for checking to see if a reference is currently being
used as a key in the weak map. Keep in mind that this only works when you
have a non-null reference to a key. The key is forcibly removed from the
weak map by the delete() method, at which point has() returns false and
get() returns undefined.

Private Object Data

Although most developers consider the main use case of weak maps to be
associating data with DOM elements, there are many other possible uses
(and no doubt some that have yet to be discovered). One practical use
of weak maps is to store data that is private to object instances. All object
properties are public in ECMAScript 6, so you need to use some creativity
to make data accessible to objects but not accessible to everything. Consider
the following example:

function Person(name) {
 this._name = name;
}

Person.prototype.getName = function() {
 return this._name;
};

This code uses the common convention of a leading underscore to
indicate that a property is considered private and should not be modified
outside the object instance. The intent is to use getName() to read this._name
and not allow the _name value to change. However, there is nothing standing
in the way of someone writing to the _name property, so it can be overwritten
either intentionally or accidentally.

In ECMAScript 5, it’s possible to get close to having truly private data
by creating an object using a pattern such as this:

var Person = (function() {

 var privateData = {},
 privateId = 0;

 function Person(name) {
 Object.defineProperty(this, "_id", { value: privateId++ });

 privateData[this._id] = {
 name: name

Sets and Maps 135

 };
 }

 Person.prototype.getName = function() {
 return privateData[this._id].name;
 };

 return Person;
}());

This example wraps the definition of Person in an immediately invoked
function expression (IIFE) that contains two private variables, privateData
and privateId. The privateData object stores private information for each
instance, and privateId generates a unique ID for each instance. When the
Person constructor is called, a nonenumerable, nonconfigurable, and non-
writable _id property is added.

Then, an entry is made into the privateData object that corresponds to
the ID for the object instance; that’s where the name is stored. Later, in the
getName() function, the name can be retrieved by using this._id as the key
into privateData. Because privateData is not accessible outside the IIFE, the
actual data is safe, even though this._id is exposed publicly.

The big problem with this approach is that the data in privateData
never disappears because there is no way to know when an object instance
is destroyed: the privateData object will always contain extra data. This prob-
lem can be solved by using a weak map instead, as follows:

let Person = (function() {

 let privateData = new WeakMap();

 function Person(name) {
 privateData.set(this, { name: name });
 }

 Person.prototype.getName = function() {
 return privateData.get(this).name;
 };

 return Person;
}());

This version of the Person example uses a weak map for the private data
instead of an object. Because the Person object instance can be used as a key,
there’s no need to keep track of a separate ID. When the Person construc-
tor is called, a new entry is made into the weak map with a key of this and a
value of an object containing private information. In this case, that value is
an object containing only name. The getName() function retrieves that private
information by passing this to the privateData.get() method, which fetches
the value object and accesses the name property. This technique keeps the
private information private and destroys that information whenever an
object instance associated with it is destroyed.

136 Chapter 7

Weak Map Uses and Limitations

When you’re deciding whether to use a weak map or a regular map, the
primary decision to consider is whether you want to use only object keys.
Anytime you’ll be using only object keys, a weak map is the best choice. A
weak map will allow you to optimize memory usage and avoid memory leaks
by ensuring that extra data isn’t retained after it’s no longer accessible.

Keep in mind that weak maps give you very little visibility into their con-
tents, so you can’t use the forEach() method, the size property, or the clear()
method to manage the items. If you need some inspection capabilities, reg-
ular maps are a better choice. Just be sure to keep an eye on memory usage.

Of course, if you only want to use nonobject keys, regular maps are
your only choice.

Summary
ECMAScript 6 formally introduces sets and maps into JavaScript. Prior to
this addition, developers frequently used objects to mimic sets and maps,
often running into problems due to the limitations associated with object
properties.

Sets are unordered lists of unique values. Values are considered unique
if they’re not equivalent according to the Object.is() method. Sets auto-
matically remove duplicate values, so you can use a set to filter an array for
duplicates and return the result. Sets aren’t subclasses of arrays, so you can-
not randomly access a set’s values. Instead, you can use the has() method
to determine if a value is contained in the set and use the size property to
inspect the number of values in the set. The Set type also has a forEach()
method to process each set value.

Weak sets are special sets that can contain only objects. The objects
are stored with weak references, meaning that an item in a weak set will
not block garbage collection if that item is the only remaining reference to
an object. Weak set contents can’t be inspected due to the complexities of
memory management, so it’s best to use weak sets only for tracking objects
that need to be grouped together.

Maps are unordered key-value pairs where the key can be any data type.
Similar to sets, duplicate keys are determined by a call to the Object.is()
method, which means you can have a numeric key 5 and a string "5" as two
separate keys. A value of any data type can be associated with a key using
the set() method, and that value can later be retrieved by using the get()
method. Maps also have a size property and a forEach() method to allow for
easier item access.

Weak maps are a special type of map that can only have object keys.
As with weak sets, an object key reference is weak and doesn’t prevent gar-
bage collection when it’s the only remaining reference to an object. When
a key is garbage-collected, the value associated with the key is also removed
from the weak map. This memory management aspect makes weak maps
uniquely suited for correlating additional information with objects whose
life cycles are managed outside the code accessing them.

8
I t e r a t o r s a n d G e n e r a t o r s

Many programming languages have
shifted from iterating over data with for

loops, which requires initializing variables
to track position in a collection, to using itera-

tor objects that programmatically return the next
item in a collection. Iterators make working with
collections of data easier, and ECMAScript 6 adds iterators to JavaScript.
When coupled with new array methods and new types of collections (such
as sets and maps), iterators are essential for efficient data processing and
you’ll find them in many parts of the language. The new for-of loop works
with iterators; the spread operator (...) uses iterators; and even asynchro-
nous programming can use iterators.

This chapter covers the many uses of iterators, but before discussing
those uses, it’s important to understand the history behind why iterators
were added to JavaScript.

138 Chapter 8

The Loop Problem
If you’ve ever programmed in JavaScript, you’ve probably written code that
looks like this:

var colors = ["red", "green", "blue"];

for (var i = 0, len = colors.length; i < len; i++) {
 console.log(colors[i]);
}

This standard for loop tracks the index into the colors array using the
i variable. The value of i increments each time the loop executes if i isn’t
larger than the length of the array (stored in len).

Although this loop is fairly straightforward, loops grow in complex-
ity when you nest them and need to keep track of multiple variables.
Additional complexity can lead to errors, and the boilerplate nature of
the for loop lends itself to more errors because similar code is written
in multiple places. Iterators are meant to eliminate the complexity and
error-prone nature of loops.

What Are Iterators?
Iterators are objects with a specific interface designed for iteration. All itera-
tor objects have a next() method that returns a result object. The result
object has two properties: value, which is the next value, and done, which is
a Boolean that’s true when there are no more values to return. The iterator
keeps an internal pointer to a location within a collection of values, and
with each call to the next() method, it returns the next appropriate value.

If you call next() after the last value has been returned, the method
returns done as true and value contains the return value for the iterator. That
return value is not part of the data set; rather, it’s a final piece of related
data or undefined if no such data exists. An iterator’s return value is similar
to a function’s return value in that it’s a final way to pass information to the
caller.

With this information in mind, creating an iterator using ECMAScript 5
is possible, as shown here:

function createIterator(items) {

 var i = 0;

 return {
 next: function() {

 var done = (i >= items.length);
 var value = !done ? items[i++] : undefined;

Iterators and Generators 139

 return {
 done: done,
 value: value
 };

 }
 };
}

var iterator = createIterator([1, 2, 3]);

console.log(iterator.next()); // "{ value: 1, done: false }"
console.log(iterator.next()); // "{ value: 2, done: false }"
console.log(iterator.next()); // "{ value: 3, done: false }"
console.log(iterator.next()); // "{ value: undefined, done: true }"

// for all further calls
console.log(iterator.next()); // "{ value: undefined, done: true }"

The createIterator() function returns an object with a next() method.
Each time the method is called, the next value in the items array is returned
as value. When i is 3, done becomes true and the ternary conditional opera-
tor that sets value evaluates to undefined. These two results fulfill the special
last case for iterators in ECMAScript 6, where next() is called on an iterator
after the last piece of data has been used.

As this example shows, writing iterators that behave according to the
rules laid out in ECMAScript 6 is a bit complex. Fortunately, ECMAScript 6
also provides generators, which make creating iterator objects much simpler.

What Are Generators?
A generator is a function that returns an iterator. Generator functions are
indicated by an asterisk character (*) after the function keyword and use the
new yield keyword. It doesn’t matter if the asterisk is directly next to function
or if some whitespace is between it and the * character, as in this example:

// generator
function *createIterator() {
 yield 1;
 yield 2;
 yield 3;
}

// generators are called like regular functions but return an iterator
let iterator = createIterator();

console.log(iterator.next().value); // 1
console.log(iterator.next().value); // 2
console.log(iterator.next().value); // 3

140 Chapter 8

The * before createIterator() makes this function a generator. The yield
keyword, also new to ECMAScript 6, specifies values the resulting iterator
should return when next() is called and the order in which they should be
returned. The iterator generated in this example has three different values
to return on successive calls to the next() method: first 1, then 2, and finally
3. A generator gets called like any other function, as shown when iterator is
created.

Perhaps the most interesting aspect of generator functions is that
they stop execution after each yield statement. For instance, after yield 1
executes in this code, the function doesn’t execute anything else until the
iterator’s next() method is called. At that point, yield 2 executes. This ability
to stop execution in the middle of a function leads to some interesting uses
of generator functions (which I discuss in “Advanced Iterator Functionality”
on page 152).

You can use the yield keyword with any value or expression, so you can
write generator functions that add items to iterators without just listing the
items one by one. For example, here’s one way you could use yield inside a
for loop:

function *createIterator(items) {
 for (let i = 0; i < items.length; i++) {
 yield items[i];
 }
}

let iterator = createIterator([1, 2, 3]);

console.log(iterator.next()); // "{ value: 1, done: false }"
console.log(iterator.next()); // "{ value: 2, done: false }"
console.log(iterator.next()); // "{ value: 3, done: false }"
console.log(iterator.next()); // "{ value: undefined, done: true }"

// for all further calls
console.log(iterator.next()); // "{ value: undefined, done: true }"

This example passes an array called items to the createIterator() gener-
ator function. Inside the function, a for loop yields the elements from the
array into the iterator as the loop progresses. Each time yield is encoun-
tered, the loop stops, and each time next() is called on iterator, the loop
picks up with the next yield statement.

Generator functions are an important ECMAScript 6 feature,
and because they are just functions, you can use them in all the same
places. The rest of this section focuses on other useful ways to write
generators.

Iterators and Generators 141

Generator Function Expressions
You can use function expressions to create generators by just including an
asterisk (*) between the function keyword and the opening parenthesis. For
example:

let createIterator = function *(items) {
 for (let i = 0; i < items.length; i++) {
 yield items[i];
 }
};

let iterator = createIterator([1, 2, 3]);

console.log(iterator.next()); // "{ value: 1, done: false }"
console.log(iterator.next()); // "{ value: 2, done: false }"
console.log(iterator.next()); // "{ value: 3, done: false }"
console.log(iterator.next()); // "{ value: undefined, done: true }"

// for all further calls
console.log(iterator.next()); // "{ value: undefined, done: true }"

In this code, createIterator() is a generator function expression instead
of a function declaration. The asterisk goes between the function keyword
and the opening parenthesis because the function expression is anony-
mous. Otherwise, this example is the same as the previous example, which
also used a for loop.

n o t e Creating an arrow function that is also a generator is not possible.

W he r e y Ie l d t hroW s e r rors

You can use the yield keyword only inside generators. Using yield anywhere
else is a syntax error, including in functions that are inside generators, such as:

function *createIterator(items) {

 items.forEach(function(item) {

 // syntax error
 yield item + 1;
 });
}

Even though yield is technically inside the createIterator() function, this
code is a syntax error because yield cannot cross function boundaries. The
yield keyword is similar to return in that a nested function cannot return a
value for its containing function.

142 Chapter 8

Generator Object Methods
Because generators are just functions, you can add them to objects, too. For
example, you can make a generator in an ECMAScript 5–style object literal
with a function expression, like this:

let o = {

 createIterator: function *(items) {
 for (let i = 0; i < items.length; i++) {
 yield items[i];
 }
 }
};

let iterator = o.createIterator([1, 2, 3]);

You can also use the ECMAScript 6 method shorthand by prepending
the method name with an asterisk (*), as shown here:

let o = {

 *createIterator(items) {
 for (let i = 0; i < items.length; i++) {
 yield items[i];
 }
 }
};

let iterator = o.createIterator([1, 2, 3]);

These examples are functionally equivalent to the example in the
previous section; they just use different syntax. In the shorthand version,
because the createIterator() method is defined with no function keyword,
the asterisk is placed immediately before the method name, although you
can leave whitespace between the asterisk and the method name.

Iterables and for-of Loops
Closely related to iterators, an iterable is an object with a Symbol.iterator
property. The well-known Symbol.iterator symbol specifies a function that
returns an iterator for the given object. All collection objects (arrays, sets,
and maps) and strings are iterables in ECMAScript 6, so they have a default
iterator specified. Iterables are designed to be used with a new addition to
ECMAScript: the for-of loop.

n o t e All iterators created by generators are also iterables, because generators assign the
Symbol.iterator property by default.

Iterators and Generators 143

At the beginning of this chapter, I mentioned the problem of tracking
an index inside a for loop. Iterators are the first part of the solution to that
problem. The for-of loop is the second part: it removes the need to track
an index into a collection entirely, freeing you to focus on working with the
contents of the collection.

A for-of loop calls next() on an iterable each time the loop executes and
stores the value from the result object in a variable. The loop continues this
process until the returned object’s done property is true. Here’s an example:

let values = [1, 2, 3];

for (let num of values) {
 console.log(num);
}

This code outputs the following:

1
2
3

This for-of loop first calls the Symbol.iterator method on the values
array to retrieve an iterator. (The call to Symbol.iterator happens behind
the scenes in the JavaScript engine.) Then iterator.next() is called, and the
value property on the iterator’s result object is read into num. The num vari-
able is first 1, then 2, and finally 3. When done on the result object is true,
the loop exits, so num is never assigned the value of undefined.

If you’re simply iterating over values in an array or collection, it’s a good
idea to use a for-of loop instead of a for loop. The for-of loop is generally
less error prone because there are fewer conditions to track. Use the tradi-
tional for loop for more complex control conditions.

W a r n I n G The for-of statement will throw an error when you use it on a non-iterable object,
null, or undefined.

Accessing the Default Iterator
You can use Symbol.iterator to access the default iterator for an object,
like this:

let values = [1, 2, 3];
let iterator = values[Symbol.iterator]();

console.log(iterator.next()); // "{ value: 1, done: false }"
console.log(iterator.next()); // "{ value: 2, done: false }"
console.log(iterator.next()); // "{ value: 3, done: false }"
console.log(iterator.next()); // "{ value: undefined, done: true }"

144 Chapter 8

This code gets the default iterator for values and uses that to iterate
over the items in the array. This is the same process that happens behind
the scenes when you’re using a for-of loop.

Because Symbol.iterator specifies the default iterator, you can use it to
detect whether an object is iterable, as follows:

function isIterable(object) {
 return typeof object[Symbol.iterator] === "function";
}

console.log(isIterable([1, 2, 3])); // true
console.log(isIterable("Hello")); // true
console.log(isIterable(new Map())); // true
console.log(isIterable(new Set())); // true
console.log(isIterable(new WeakMap())); // false
console.log(isIterable(new WeakSet())); // false

The isIterable() function simply checks whether a default iterator exists
on the object and is a function. The for-of loop does a similar check before
executing.

So far, the examples in this section have shown ways to use Symbol.iterator
with built-in iterable types, but you can also use the Symbol.iterator property
to create your own iterables.

Creating Iterables
Developer-defined objects are not iterable by default, but you can make
them iterable by creating a Symbol.iterator property containing a generator.
For example:

let collection = {
 items: [],
 *[Symbol.iterator]() {
 for (let item of this.items) {
 yield item;
 }
 }

};

collection.items.push(1);
collection.items.push(2);
collection.items.push(3);

for (let x of collection) {
 console.log(x);
}

Iterators and Generators 145

This code outputs the following:

1
2
3

First, the example defines a default iterator for an object called
collection. The default iterator is created by the Symbol.iterator method,
which is a generator (note that the asterisk still comes before the name).
The generator then uses a for-of loop to iterate over the values in this.items
and uses yield to return each one. Instead of manually iterating to define
values for the default iterator of collection to return, the collection object
relies on the default iterator of this.items to do the work.

n o t e “Delegating Generators” on page 156 describes a different approach to using the
iterator of another object.

Now you’ve seen some uses for the default array iterator, but there are
many more iterators built in to ECMAScript 6 to make working with collec-
tions of data easy.

Built-In Iterators
Iterators are an important part of ECMAScript 6, and as such, you don’t
need to create your own iterators for many built-in types: the language
includes them by default. You only need to create iterators when the built-
in iterators don’t serve your purpose, which will most frequently be when
defining your own objects or classes. Otherwise, you can rely on built-in
iterators to do your work. Perhaps the most common iterators you’ll use
are those that work on collections.

Collection Iterators
ECMAScript 6 has three types of collection objects: arrays, maps, and sets.
All three have the following built-in iterators to help you navigate their
content:

entries() Returns an iterator whose values are key-value pairs

values() Returns an iterator whose values are the values of the
collection

keys() Returns an iterator whose values are the keys contained in the
collection

You can retrieve an iterator for a collection by calling one of these
methods.

146 Chapter 8

The entries() Iterator

The entries() iterator returns a two-item array each time next() is called. The
two-item array represents the key and value for each item in the collection.
For arrays, the first item is the numeric index; for sets, the first item is also
the value (because values double as keys in sets); for maps, the first item
is the key.

Here are some examples that use the entries() iterator:

let colors = ["red", "green", "blue"];
let tracking = new Set([1234, 5678, 9012]);
let data = new Map();

data.set("title", "Understanding ECMAScript 6");
data.set("format", "ebook");

for (let entry of colors.entries()) {
 console.log(entry);
}

for (let entry of tracking.entries()) {
 console.log(entry);
}

for (let entry of data.entries()) {
 console.log(entry);
}

The console.log() calls produce the following output:

[0, "red"]
[1, "green"]
[2, "blue"]
[1234, 1234]
[5678, 5678]
[9012, 9012]
["title", "Understanding ECMAScript 6"]
["format", "ebook"]

This code uses the entries() method on each type of collection to
retrieve an iterator, and it uses for-of loops to iterate the items. The con-
sole output shows how the keys and values are returned in pairs for each
object.

The values() Iterator

The values() iterator simply returns values as they are stored in the collec-
tion. For example:

let colors = ["red", "green", "blue"];
let tracking = new Set([1234, 5678, 9012]);
let data = new Map();

Iterators and Generators 147

data.set("title", "Understanding ECMAScript 6");
data.set("format", "ebook");

for (let value of colors.values()) {
 console.log(value);
}

for (let value of tracking.values()) {
 console.log(value);
}

for (let value of data.values()) {
 console.log(value);
}

This code outputs the following:

"red"
"green"
"blue"
1234
5678
9012
"Understanding ECMAScript 6"
"ebook"

Calling the values() iterator, as in this example, returns the exact data
contained in each collection without any information about that data’s loca-
tion in the collection.

The keys() Iterator

The keys() iterator returns each key present in a collection. For arrays, it
returns only numeric keys; it never returns other own properties of the
array. For sets, the keys are the same as the values, so keys() and values()
return the same iterator. For maps, the keys() iterator returns each unique
key. Here’s an example that demonstrates all three:

let colors = ["red", "green", "blue"];
let tracking = new Set([1234, 5678, 9012]);
let data = new Map();

data.set("title", "Understanding ECMAScript 6");
data.set("format", "ebook");

for (let key of colors.keys()) {
 console.log(key);
}

for (let key of tracking.keys()) {
 console.log(key);
}

148 Chapter 8

for (let key of data.keys()) {
 console.log(key);
}

This example outputs the following:

0
1
2
1234
5678
9012
"title"
"format"

The keys() iterator fetches each key in colors, tracking, and data, and
those keys are printed from inside the three for-of loops. For the array
object, only numeric indexes are printed, which would still happen even if
you added named properties to the array. This is different from the way the
for-in loop works with arrays, because the for-in loop iterates over proper-
ties rather than just the numeric indexes.

Default Iterators for Collection Types

Each collection type also has a default iterator that is used by for-of when-
ever an iterator isn’t explicitly specified. The values() method is the default
iterator for arrays and sets, whereas the entries() method is the default iter-
ator for maps. These defaults make using collection objects in for-of loops a
little easier. For instance, consider this example:

let colors = ["red", "green", "blue"];
let tracking = new Set([1234, 5678, 9012]);
let data = new Map();

data.set("title", "Understanding ECMAScript 6");
data.set("format", "print");

// same as using colors.values()
for (let value of colors) {
 console.log(value);
}

// same as using tracking.values()
for (let num of tracking) {
 console.log(num);
}

// same as using data.entries()
for (let entry of data) {
 console.log(entry);
}

Iterators and Generators 149

No iterator is specified, so the default iterator functions will be used.
The default iterators for arrays, sets, and maps are designed to reflect how
these objects are initialized, so this code outputs the following:

"red"
"green"
"blue"
1234
5678
9012
["title", "Understanding ECMAScript 6"]
["format", "print"]

Arrays and sets return their values by default, whereas maps return the
same array format that can be passed into the Map constructor. On the other
hand, weak sets and weak maps do not have built-in iterators. Managing
weak references means there’s no way to know exactly how many values are
in these collections, which also means there’s no way to iterate over them.

String Iterators
JavaScript strings have slowly become more like arrays since ECMAScript 5
was released. For example, ECMAScript 5 formalized bracket notation
for accessing characters in strings (that is, using text[0] to get the first

de s t ruc t ur InG a nd for-of loop s

The behavior of the default constructor for maps is also helpful when you use it
in for-of loops with destructuring, as in this example:

let data = new Map();

data.set("title", "Understanding ECMAScript 6");
data.set("format", "ebook");

// same as using data.entries()
for (let [key, value] of data) {
 console.log(key + "=" + value);
}

The for-of loop in this code uses a destructured array to assign key and
value for each entry in the map. In this way, you can easily work with keys and
values at the same time without needing to access a two-item array or going
back to the map to fetch either the key or the value. Using a destructured array
for maps makes the for-of loop equally useful for maps as it is for sets and
arrays.

150 Chapter 8

character, and so on). But bracket notation works on code units rather
than characters, so it cannot be used to access double-byte characters cor-
rectly, as this example demonstrates:

var message = "A 𠮷 B";

for (let i=0; i < message.length; i++) {
 console.log(message[i]);
}

This code uses bracket notation and the length property to iterate
over and print a string containing a Unicode character. The output is a
bit unexpected:

A
(blank)
(blank)
(blank)
(blank)
B

Because the double-byte character is treated as two separate code units,
four empty lines are between A and B in the output.

Fortunately, ECMAScript 6 aims to fully support Unicode (see Chap-
ter 2), and the default string iterator is an attempt to solve the string itera-
tion problem. As such, the default iterator for strings works on characters
rather than code units. Changing the preceding example to use the default
string iterator with a for-of loop results in more appropriate output. Here’s
the tweaked code:

var message = "A 𠮷 B";

for (let c of message) {
 console.log(c);
}

This code outputs the following:

A
(blank)
𠮷
(blank)
B

This result is more in line with what you’d expect when you’re working
with characters: the loop successfully prints the Unicode character as well
as all the rest.

Iterators and Generators 151

NodeList Iterators
The DOM has a NodeList type that represents a collection of elements in a
document. For those who write JavaScript to run in web browsers, under-
standing the difference between NodeList objects and arrays has always been
a bit difficult. Both NodeList objects and arrays use the length property to
indicate the number of items, and both use bracket notation to access indi-
vidual items. Internally, however, a NodeList and an array behave quite dif-
ferently, which has led to a lot of confusion.

With the addition of default iterators in ECMAScript 6, the DOM
definition of NodeList (included in the HTML specification rather than
ECMAScript 6) includes a default iterator that behaves in the same manner
as the array default iterator. That means you can use NodeList in a for-of
loop or any other place that uses an object’s default iterator. For example:

var divs = document.getElementsByTagName("div");

for (let div of divs) {
 console.log(div.id);
}

This code calls getElementsByTagName() to retrieve a NodeList that repre-
sents all of the <div> elements in the document object. The for-of loop then
iterates over each element and outputs the element IDs, effectively making
the code the same as it would be for a standard array.

The Spread Operator and Nonarray Iterables
Recall from Chapter 7 that you can use the spread operator (...) to convert
a set into an array. For example:

let set = new Set([1, 2, 3, 3, 3, 4, 5]),
 array = [...set];

console.log(array); // [1,2,3,4,5]

This code uses the spread operator inside an array literal to fill in
that array with the values from set. The spread operator works on all iter-
ables and uses the default iterator to determine which values to include. All
values are read from the iterator and inserted into the array in the order in
which values where returned from the iterator. This example runs properly
because sets are iterables, but the spread operator works equally well on any
iterable. Here’s another example:

let map = new Map([["name", "Nicholas"], ["age", 25]]),
 array = [...map];

console.log(array); // [["name", "Nicholas"], ["age", 25]]

152 Chapter 8

Here, the spread operator converts map into an array of arrays. Because
the default iterator for maps returns key-value pairs, the resulting array
looks like the array that was passed during the new Map() call.

You can use the spread operator in an array literal as many times as you
want, and you can use it wherever you want to insert multiple items from an
iterable. Those items will just appear in order in the new array at the loca-
tion of the spread operator. For example:

let smallNumbers = [1, 2, 3],
 bigNumbers = [100, 101, 102],
 allNumbers = [0, ...smallNumbers, ...bigNumbers];

console.log(allNumbers.length); // 7
console.log(allNumbers); // [0, 1, 2, 3, 100, 101, 102]

Here, the spread operator is used to create allNumbers from the values
in smallNumbers and bigNumbers. The values are placed in allNumbers in the
same order the arrays are added when allNumbers is created: 0 is first,
followed by the values from smallNumbers, followed by the values from
bigNumbers. However, the original arrays are unchanged, because their
values have just been copied into allNumbers.

Because you can use the spread operator on any iterable, using it is the
easiest way to convert an iterable into an array. You can convert strings into
arrays of characters (not code units) and NodeList objects in the browser
into arrays of nodes.

Now that you understand the basics of how iterators work, including
for-of and the spread operator, it’s time to look at some more complex uses
of iterators.

Advanced Iterator Functionality
You can accomplish a lot with the basic functionality of iterators and the
convenience of creating them using generators. However, iterators can
be used for tasks other than simply iterating over a collection of values.
During the development of ECMAScript 6, many unique ideas and pat-
terns emerged that encouraged the creators to add more functionality to
the language. Some of those additions are subtle, but when used together,
they can accomplish some interesting interactions, as discussed in the fol-
lowing sections.

Passing Arguments to Iterators
Throughout this chapter, examples have shown iterators passing values out
via the next() method or by using yield in a generator. But you can also pass
arguments to the iterator through the next() method. When you pass an
argument to the next() method, that argument becomes the value of the yield

Iterators and Generators 153

statement inside a generator. This capability is important for more advanced
functionality, such as asynchronous programming. Here’s a basic example:

function *createIterator() {
 let first = yield 1;
 let second = yield first + 2; // 4 + 2
 yield second + 3; // 5 + 3
}

let iterator = createIterator();

console.log(iterator.next()); // "{ value: 1, done: false }"
console.log(iterator.next(4)); // "{ value: 6, done: false }"
console.log(iterator.next(5)); // "{ value: 8, done: false }"
console.log(iterator.next()); // "{ value: undefined, done: true }"

The first call to next() is a special case where any argument passed to
it is lost. Because arguments passed to next() become the values returned
by yield, an argument from the first call to next() could only replace the
first yield statement in the generator function if it could be accessed before
that yield statement. That’s not possible, so there’s no reason to pass an
argument the first time next() is called.

On the second call to next(), the value 4 is passed as the argument.
The 4 ends up assigned to the variable first inside the generator func-
tion. In a yield statement including an assignment, the right side of the
expression is evaluated on the first call to next() and the left side is evalu-
ated on the second call to next() before the function continues execut-
ing. Because the second call to next() passes in 4, that value is assigned to
first and then execution continues.

The second yield uses the result of the first yield and adds two, which
means it returns a value of 6. When next() is called a third time, the value 5
is passed as an argument. That value is assigned to the variable second and
then used in the third yield statement to return 8.

It’s a bit easier to think about what’s happening by considering which
code is executing each time execution continues inside the generator func-
tion. Figure 8-1 uses shades of gray to show the code being executed before
yielding.

function*createIterator(){
 let first = yield 1;
 let second = yield first + 2;
 yield second + 3;
}

next()
next(4)
next(5)

Figure 8-1: Code execution inside a generator

154 Chapter 8

Light gray highlights the first call to next() and all the code executed
inside the generator as a result. Medium gray represents the call to next(4)
and the code that is executed with that call. Dark gray represents the call to
next(5) and the code that is executed as a result. The tricky part is how the
code on the right side of each expression executes and stops before the left
side is executed. This makes debugging complicated generators a bit more
involved than debugging regular functions.

You’ve seen that yield can act like return when a value is passed to the
next() method, but that’s not the only execution trick you can do inside a
generator. You can also cause iterators to throw an error.

Throwing Errors in Iterators
It’s possible to pass not just data into iterators, but also error conditions.
Iterators can implement a throw() method that instructs the iterator to
throw an error when it resumes. This is an important capability for asyn-
chronous programming but also for flexibility inside generators, where you
want to be able to mimic return values and thrown errors (the two ways of
exiting a function). You can pass an error object to throw() that should be
thrown when the iterator continues processing. For example:

function *createIterator() {
 let first = yield 1;
 let second = yield first + 2; // yield 4 + 2, then throw
 yield second + 3; // never is executed
}

let iterator = createIterator();

console.log(iterator.next()); // "{ value: 1, done: false }"
console.log(iterator.next(4)); // "{ value: 6, done: false }"
console.log(iterator.throw(new Error("Boom"))); // error thrown from generator

In this example, the first two yield expressions are evaluated normally,
but when throw() is called, an error is thrown before let second is evaluated.
This effectively halts code execution similar to directly throwing an error.
The only difference is the location in which the error is thrown. Figure 8-2
shows which code is executed at each step.

function*createIterator(){
 let first = yield 1;
 let second = yield first + 2;
 yield second + 3;
}

next()
next(4)
throw(newError());

Figure 8-2: Throwing an error inside a generator

Iterators and Generators 155

As in Figure 8-1, light and medium gray show which next() and yield
calls happen together. The throw() call is highlighted in dark gray, and the
dark gray star shows approximately when the error is thrown inside the
generator. The first two yield statements are executed, and when throw() is
called, an error is thrown before any other code executes. Knowing this,
you can catch such errors inside the generator using a try-catch block:

function *createIterator() {
 let first = yield 1;
 let second;

 try {
 second = yield first + 2; // yield 4 + 2, then throw
 } catch (ex) {
 second = 6; // on error, assign a different value
 }
 yield second + 3;
}

let iterator = createIterator();

console.log(iterator.next()); // "{ value: 1, done: false }"
console.log(iterator.next(4)); // "{ value: 6, done: false }"
console.log(iterator.throw(new Error("Boom"))); // "{ value: 9, done: false }"
console.log(iterator.next()); // "{ value: undefined, done: true }"

In this example, a try-catch block is wrapped around the second yield
statement. Although this yield executes without error, the error is thrown
before any value can be assigned to second, so the catch block assigns it a
value of 6. Execution then flows to the next yield and returns 9.

Notice that something interesting happened: the throw() method
returned a result object just like the next() method. Because the error was
caught inside the generator, code execution continued to the next yield
and returned the next value, 9.

It helps to think of next() and throw() as being instructions to the itera-
tor. The next() method instructs the iterator to continue executing (possibly
with a given value), and throw() instructs the iterator to continue executing
by throwing an error. What happens after that point depends on the code
inside the generator.

The next() and throw() methods control execution inside an iterator
when you’re using yield, but you can also use the return statement. But
return works a bit differently than it does in regular functions, as you’ll see
in the next section.

Generator Return Statements
Because generators are functions, you can use the return statement to exit
early and specify a return value for the last call to the next() method. In
most examples in this chapter, the last call to next() on an iterator returns

156 Chapter 8

undefined, but you can specify an alternate value by using return as you would
in any other function. In a generator, return indicates that all processing is
done, so the done property is set to true and the value, if provided, becomes
the value field. Here’s an example that simply exits early using return:

function *createIterator() {
 yield 1;
 return;
 yield 2;
 yield 3;
}

let iterator = createIterator();

console.log(iterator.next()); // "{ value: 1, done: false }"
console.log(iterator.next()); // "{ value: undefined, done: true }"

In this code, the generator has a yield statement followed by a return
statement. The return indicates that no more values are to come, so the rest
of the yield statements will not execute (they are unreachable).

You can also specify a return value that will end up in the value field of
the returned object. For example:

function *createIterator() {
 yield 1;
 return 42;
}

let iterator = createIterator();

console.log(iterator.next()); // "{ value: 1, done: false }"
console.log(iterator.next()); // "{ value: 42, done: true }"
console.log(iterator.next()); // "{ value: undefined, done: true }"

Here, the value 42 is returned in the value field on the second call to
the next() method (which is the first time that done is true). The third call
to next() returns an object whose value property is once again undefined. Any
value you specify with return is only available on the returned object one
time before the value field is reset to undefined.

n o t e The spread operator and for-of ignore any value specified by a return statement. As
soon as they see done is true, they stop without reading the value. However, iterator
return values are helpful when delegating generators.

Delegating Generators
In some cases, combining the values from two iterators into one is useful.
Generators can delegate to other generators using a special form of yield

Iterators and Generators 157

with an asterisk (*). As with generator definitions, where the asterisk
appears doesn’t matter, as long as the asterisk falls between the yield key-
word and the generator function name. Here’s an example:

function *createNumberIterator() {
 yield 1;
 yield 2;
}

function *createColorIterator() {
 yield "red";
 yield "green";
}

function *createCombinedIterator() {
 yield *createNumberIterator();
 yield *createColorIterator();
 yield true;
}

var iterator = createCombinedIterator();

console.log(iterator.next()); // "{ value: 1, done: false }"
console.log(iterator.next()); // "{ value: 2, done: false }"
console.log(iterator.next()); // "{ value: "red", done: false }"
console.log(iterator.next()); // "{ value: "green", done: false }"
console.log(iterator.next()); // "{ value: true, done: false }"
console.log(iterator.next()); // "{ value: undefined, done: true }"

In this example, the createCombinedIterator() generator delegates first to
createNumberIterator() and then to createColorIterator(). The returned iterator
appears, from the outside, to be one consistent iterator that has produced all
of the values. Each call to next() is delegated to the appropriate iterator until
the iterators created by createNumberIterator() and createColorIterator() are
empty. Then the final yield is executed to return true.

Generator delegation also lets you make further use of generator return
values. It’s the easiest way to access such returned values and can be quite
useful when performing complex tasks. For example:

function *createNumberIterator() {
 yield 1;
 yield 2;
 return 3;
}

function *createRepeatingIterator(count) {
 for (let i=0; i < count; i++) {
 yield "repeat";
 }
}

158 Chapter 8

function *createCombinedIterator() {
 let result = yield *createNumberIterator();
 yield *createRepeatingIterator(result);
}

var iterator = createCombinedIterator();

console.log(iterator.next()); // "{ value: 1, done: false }"
console.log(iterator.next()); // "{ value: 2, done: false }"
console.log(iterator.next()); // "{ value: "repeat", done: false }"
console.log(iterator.next()); // "{ value: "repeat", done: false }"
console.log(iterator.next()); // "{ value: "repeat", done: false }"
console.log(iterator.next()); // "{ value: undefined, done: true }"

In this example, the createCombinedIterator() generator delegates
to createNumberIterator() and assigns the return value to result. Because
createNumberIterator() contains return 3, the returned value is 3. The result
variable is then passed to createRepeatingIterator() as an argument indicat-
ing how many times to yield the same string (in this case, three times).

Notice that the value 3 was never output from any call to the next()
method. Right now, it exists solely inside the createCombinedIterator() gen-
erator. But you can output that value as well by adding another yield state-
ment, such as:

function *createNumberIterator() {
 yield 1;
 yield 2;
 return 3;
}

function *createRepeatingIterator(count) {
 for (let i=0; i < count; i++) {
 yield "repeat";
 }
}

function *createCombinedIterator() {
 let result = yield *createNumberIterator();
 yield result;
 yield *createRepeatingIterator(result);
}

var iterator = createCombinedIterator();

console.log(iterator.next()); // "{ value: 1, done: false }"
console.log(iterator.next()); // "{ value: 2, done: false }"
console.log(iterator.next()); // "{ value: 3, done: false }"
console.log(iterator.next()); // "{ value: "repeat", done: false }"
console.log(iterator.next()); // "{ value: "repeat", done: false }"
console.log(iterator.next()); // "{ value: "repeat", done: false }"
console.log(iterator.next()); // "{ value: undefined, done: true }"

Iterators and Generators 159

In this code, the extra yield statement explicitly outputs the returned
value from the createNumberIterator() generator.

n o t e You can use yield * directly on strings (as in yield * "hello"), and the string’s
default iterator will be used.

Asynchronous Task Running
Much of the excitement around generators is directly related to asynchro-
nous programming. Asynchronous programming in JavaScript is a double-
edged sword: simple tasks are easy to do asynchronously, but complex tasks
become an adventure in code organization. Because generators allow you
to effectively pause code in the middle of execution, they open many pos-
sibilities related to asynchronous processing.

The traditional way to perform asynchronous operations is to call a
function that has a callback. For example, consider reading a file from the
disk in Node.js:

let fs = require("fs");

fs.readFile("config.json", function(err, contents) {
 if (err) {
 throw err;
 }

 doSomethingWith(contents);
 console.log("Done");
});

The fs.readFile() method is called with the filename to read and a
callback function. When the operation is finished, the callback function is
called. The callback checks whether an error exists, and if not, processes
the returned contents. This works well when you have a small, finite number
of asynchronous tasks to complete but gets complicated when you need
to nest callbacks or otherwise sequence a series of asynchronous tasks. In
those situations, generators and yield are helpful.

A Simple Task Runner
Because yield stops execution and waits for the next() method to be called
before starting again, you can implement asynchronous calls without man-
aging callbacks. To start, you need a function that can call a generator and
start the iterator, such as this:

function run(taskDef) {

 // create the iterator, make available elsewhere
 let task = taskDef();

160 Chapter 8

 // start the task
 let result = task.next();

 // recursive function to keep calling next()
 function step() {

 // if there's more to do
 if (!result.done) {
 result = task.next();
 step();
 }
 }

 // start the process
 step();

}

The run() function accepts a task definition (a generator function) as
an argument. It calls the generator to create an iterator and stores the itera-
tor in task. The first call to next() begins the iterator and the result is stored
for later use. The step() function checks whether result.done is false and,
if so, calls next() before recursively calling itself. Each call to next() stores
the return value in result, which is always overwritten to contain the latest
information. The initial call to step() starts the process of looking at the
result.done variable to see whether there’s more to do.

With this implementation of run(), you can run a generator containing
multiple yield statements, such as:

run(function*() {
 console.log(1);
 yield;
 console.log(2);
 yield;
 console.log(3);
});

This example just outputs three numbers to the console, which simply
shows that all calls to next() are being made. However, just yielding a couple
of times isn’t very useful. The next step is to pass values into and out of the
iterator.

Task Running with Data
The easiest way to pass data through the task runner is to pass the value
specified by yield into the next call to the next() method. To do so, you need
only pass result.value, as in this code:

function run(taskDef) {

 // create the iterator, make available elsewhere
 let task = taskDef();

Iterators and Generators 161

 // start the task
 let result = task.next();

 // recursive function to keep calling next()
 function step() {

 // if there's more to do
 if (!result.done) {
 result = task.next(result.value);
 step();
 }
 }

 // start the process
 step();

}

Now that result.value is passed to next() as an argument, it’s possible to
pass data between yield calls, like this:

run(function*() {
 let value = yield 1;
 console.log(value); // 1

 value = yield value + 3;
 console.log(value); // 4
});

This example outputs two values to the console: 1 and 4. The value 1
comes from yield 1, because the 1 is passed right back into the value vari-
able. The 4 is calculated by adding 3 to value and passing that result back
to value. Now that data is flowing between calls to yield, you just need one
small change to allow asynchronous calls.

An Asynchronous Task Runner
The previous example passed static data back and forth between yield calls,
but waiting for an asynchronous process is slightly different. The task runner
needs to know about callbacks and how to use them. Because yield expres-
sions pass their values into the task runner, any function call must return a
value that somehow indicates the call is an asynchronous operation that the
task runner should wait for.

Here is one way you might signal that a value is an asynchronous
operation:

function fetchData() {
 return function(callback) {
 callback(null, "Hi!");
 };
}

162 Chapter 8

For the purposes of this example, any function meant to be called by the
task runner will return a function that executes a callback. The fetchData()
function returns a function that accepts a callback function as an argument.
When the returned function is called, it executes the callback function with a
single piece of data (the "Hi!" string). The callback argument needs to come
from the task runner to ensure executing the callback correctly interacts with
the underlying iterator. Although the fetchData() function is synchronous,
you can easily extend it to be asynchronous by calling the callback with a
slight delay, such as:

function fetchData() {
 return function(callback) {
 setTimeout(function() {
 callback(null, "Hi!");
 }, 50);
 };
}

This version of fetchData() introduces a 50 ms delay before calling the
callback, demonstrating that this pattern works equally well for synchro-
nous and asynchronous code. You just have to make sure each function
that wants to be called using yield follows the same pattern.

With a good understanding of how a function can signal that it’s an
asynchronous process, you can modify the task runner to take that fact
into account. Anytime result.value is a function, the task runner will exe-
cute it instead of just passing that value to the next() method. Here’s the
updated code:

function run(taskDef) {

 // create the iterator, make available elsewhere
 let task = taskDef();

 // start the task
 let result = task.next();

 // recursive function to keep calling next()
 function step() {

 // if there's more to do
 if (!result.done) {
 if (typeof result.value === "function") {
 result.value(function(err, data) {
 if (err) {
 result = task.throw(err);
 return;
 }

 result = task.next(data);
 step();
 });

Iterators and Generators 163

 } else {
 result = task.next(result.value);
 step();
 }

 }
 }

 // start the process
 step();

}

When result.value is a function (checked with the === operator), it’s
called with a callback function. That callback function follows the Node.js
convention of passing any possible error as the first argument (err) and the
result as the second argument. If err is present, that means an error occurred
and task.throw() is called with the error object instead of task.next() so an
error is thrown at the correct location. If there is no error, data is passed into
task.next() and the result is stored. Then, step() is called to continue the
process. When result.value is not a function, it’s directly passed to the next()
method.

This new version of the task runner is ready for all asynchronous tasks.
To read data from a file in Node.js, you need to create a wrapper around
fs.readFile() that returns a function similar to the fetchData() function
from the beginning of this section. For example:

let fs = require("fs");

function readFile(filename) {
 return function(callback) {
 fs.readFile(filename, callback);
 };
}

The readFile() method accepts a single argument, the filename, and
returns a function that calls a callback. The callback is passed directly to
the fs.readFile() method, which will execute the callback upon completion.
You can then run this task using yield as follows:

run(function*() {
 let contents = yield readFile("config.json");
 doSomethingWith(contents);
 console.log("Done");
});

This example performs the asynchronous readFile() operation without
making any callbacks visible in the main code. Aside from yield, the code
looks the same as synchronous code. As long as the functions performing
asynchronous operations all conform to the same interface, you can write
logic that reads like synchronous code.

164 Chapter 8

Of course, there are downsides to the pattern used in these examples;
namely, you can’t always be sure a function that returns a function is asyn-
chronous. But for now, it’s only important that you understand the theory
behind the task running. Another new feature in ECMAScript 6, promises,
offers more flexible ways of scheduling asynchronous tasks, and Chapter 11
covers this topic in more depth.

Summary
Iterators are an important part of ECMAScript 6 and are at the root of sev-
eral key language elements. On the surface, iterators provide a simple way
to return a sequence of values using a simple API. However, there are far
more complex ways to use iterators in ECMAScript 6.

The Symbol.iterator symbol is used to define default iterators for objects.
Both built-in objects and developer-defined objects can use this symbol to
provide a method that returns an iterator. When Symbol.iterator is provided
on an object, the object is considered an iterable.

The for-of loop uses iterables to return a series of values in a loop.
Using for-of is easier than iterating with a traditional for loop because
you no longer need to track values and control when the loop ends. The
for-of loop automatically reads all values from the iterator until there are
no more, and then it exits.

To make for-of simpler to use, many values in ECMAScript 6 have default
iterators. All the collection types—that is, arrays, maps, and sets—have itera-
tors designed to make their contents easy to access. Strings also have a default
iterator, which makes iterating over the characters of the string (rather than
the code units) easy.

The spread operator works with any iterable and makes converting iter-
ables into arrays easy, too. The conversion works by reading values from an
iterator and inserting them individually into an array.

A generator is a special function that automatically creates an iterator
when called. Generator definitions are indicated by an asterisk (*) and use
of the yield keyword to indicate which value to return for each successive
call to the next() method.

Generator delegation encourages good encapsulation of iterator behav-
ior by letting you reuse existing generators in new generators. You can use
an existing generator inside another generator by calling yield * instead of
yield. This process allows you to create an iterator that returns values from
multiple iterators.

Perhaps the most interesting and exciting aspect of generators and
iterators is the possibility of creating cleaner-looking asynchronous code.
Instead of needing to use callbacks everywhere, you can set up code that
looks synchronous but in fact uses yield to wait for asynchronous operations
to complete.

9
I n t r o d u c I n g J a v a S c r I p t

c l a S S e S

Unlike most formal object-oriented pro-
gramming languages, JavaScript didn’t

support classes and classical inheritance as
the primary way of defining similar and related

objects when it was created. This left many develop-
ers confused, and from pre–ECMAScript 1 through
ECMAScript 5, many libraries created utilities to make JavaScript look like
it supported classes. Although some JavaScript developers feel strongly that
the language doesn’t need classes, the number of libraries created specifi-
cally for this purpose led to the inclusion of classes in ECMAScript 6.

When you’re exploring ECMAScript 6 classes, it’s helpful to under-
stand the underlying mechanisms that classes use, so this chapter starts
by discussing how ECMAScript 5 developers achieved class-like behavior.
However, as you’ll see, ECMAScript 6 classes aren’t the same as classes in
other languages. They have a uniqueness that embraces the dynamic nature
of JavaScript.

166 Chapter 9

Class-Like Structures in ECMAScript 5
As mentioned, in ECMAScript 5 and earlier, JavaScript had no classes. The
closest equivalent to a class was creating a constructor and then assigning
methods to the constructor’s prototype, an approach typically called creat-
ing a custom type. For example:

function PersonType(name) {
 this.name = name;
}

PersonType.prototype.sayName = function() {
 console.log(this.name);
};

var person = new PersonType("Nicholas");
person.sayName(); // outputs "Nicholas"

console.log(person instanceof PersonType); // true
console.log(person instanceof Object); // true

In this code, PersonType is a constructor function that creates a single
property called name. The sayName() method is assigned to the prototype so
the same function is shared by all instances of the PersonType object. Then,
a new instance of PersonType is created via the new operator. The resulting
person object is considered an instance of PersonType and of Object through
prototypal inheritance.

This basic pattern underlies many of the class-mimicking JavaScript
libraries, and that’s where ECMAScript 6 classes start.

Class Declarations
The simplest class form in ECMAScript 6 is the class declaration, which
looks similar to classes in other languages.

A Basic Class Declaration
Class declarations begin with the class keyword followed by the name of
the class. The rest of the syntax looks similar to concise methods in object
literals but doesn’t require commas between the elements of the class.
Here’s a simple class declaration:

class PersonClass {

 // equivalent of the PersonType constructor
 constructor(name) {
 this.name = name;
 }

 // equivalent of PersonType.prototype.sayName
 sayName() {

Introducing JavaScript Classes 167

 console.log(this.name);
 }
}

let person = new PersonClass("Nicholas");
person.sayName(); // outputs "Nicholas"

console.log(person instanceof PersonClass); // true
console.log(person instanceof Object); // true

console.log(typeof PersonClass); // "function"
console.log(typeof PersonClass.prototype.sayName); // "function"

The class declaration for PersonClass behaves similarly to PersonType in the
previous example. But instead of defining a function as the constructor, class
declarations allow you to define the constructor directly inside the class using
the special constructor method name. Because class methods use the concise
syntax, there’s no need to use the function keyword. All other method names
have no special meaning, so you can add as many methods as you want.

Own properties, properties that occur on the instance rather than the
prototype, can only be created inside a class constructor or method. In this
example, name is an own property. I recommend creating all possible own
properties inside the constructor function so a single place in the class is
responsible for all of them.

Interestingly, class declarations are just syntactic sugar on top of the
existing custom type declarations. The PersonClass declaration actually
creates a function that has the behavior of the constructor method, which
is why typeof PersonClass gives "function" as the result. The sayName() method
also ends up as a method on PersonClass.prototype in this example, similar to
the relationship between sayName() and PersonType.prototype in the previous
example. These similarities allow you to mix custom types and classes with-
out worrying too much about which you’re using.

n o t e Class prototypes, such as PersonClass.prototype in the preceding example, are read-
only. That means you cannot assign a new value to the prototype like you can with
functions.

Why Use the Class Syntax?
Despite the similarities between classes and custom types, you need to keep
some important differences in mind:

•	 Class declarations, unlike function declarations, are not hoisted. Class
declarations act like let declarations, so they exist in the temporal dead
zone until execution reaches the declaration.

•	 All code inside class declarations runs in strict mode automatically.
There’s no way to opt out of strict mode inside classes.

•	 All methods are nonenumerable. This is a significant change from
custom types, where you need to use Object.defineProperty() to make a
method nonenumerable.

168 Chapter 9

•	 All methods lack an internal [[Construct]] method and will throw an
error if you try to call them with new.

•	 Calling the class constructor without new throws an error.

•	 Attempting to overwrite the class name within a class method throws
an error.

With all of these differences in mind, the PersonClass declaration in the
previous example is directly equivalent to the following code, which doesn’t
use the class syntax:

// direct equivalent of PersonClass
let PersonType2 = (function() {

 "use strict";

 const PersonType2 = function(name) {

 // make sure the function was called with new
 if (typeof new.target === "undefined") {
 throw new Error("Constructor must be called with new.");
 }

 this.name = name;
 }

 Object.defineProperty(PersonType2.prototype, "sayName", {
 value: function() {

 // make sure the method wasn't called with new
 if (typeof new.target !== "undefined") {
 throw new Error("Method cannot be called with new.");
 }

 console.log(this.name);
 },
 enumerable: false,
 writable: true,
 configurable: true
 });

 return PersonType2;
}());

First, notice that there are two PersonType2 declarations: a let declara-
tion in the outer scope and a const declaration inside the immediately
invoked function expression (IIFE)—this is how class methods are for-
bidden from overwriting the class name while code outside the class is
allowed to do so. The constructor function checks new.target to ensure
that it’s being called with new; if not, an error is thrown. Next, the sayName()
method is defined as nonenumerable, and the method checks new.target to
ensure that it wasn’t called with new. The final step returns the constructor
function.

Introducing JavaScript Classes 169

This example shows that although it’s possible to do everything classes
do without using the new syntax, the class syntax simplifies the functional-
ity significantly.

Class Expressions
Classes and functions are similar in that they have two forms: declarations
and expressions. Function and class declarations begin with an appropriate
keyword (function or class, respectively) followed by an identifier. Functions
have an expression form that doesn’t require an identifier after function;
similarly, classes have an expression form that doesn’t require an identifier
after class. These class expressions are designed to be used in variable decla-
rations or passed into functions as arguments.

A Basic Class Expression
Here’s the class expression equivalent of the previous PersonClass examples,
followed by some code that uses it:

let PersonClass = class {

 // equivalent of the PersonType constructor
 constructor(name) {
 this.name = name;
 }

conS ta n t cl a SS n a me S

The class name is only constant inside the class itself. That means you can
overwrite the class name outside the class but not inside a class method. For
example:

class Foo {
 constructor() {
 Foo = "bar"; // throws an error when executed...
 }
}

// but this is okay after the class declaration
Foo = "baz";

In this code, the Foo inside the class constructor is a separate binding from
the Foo outside the class. The internal Foo is defined as if it’s a const and cannot
be overwritten. An error is thrown when the constructor attempts to overwrite
Foo with any value. But because the external Foo is defined as if it’s a let decla-
ration, you can overwrite its value at any time.

170 Chapter 9

 // equivalent of PersonType.prototype.sayName
 sayName() {
 console.log(this.name);
 }
};

let person = new PersonClass("Nicholas");
person.sayName(); // outputs "Nicholas"

console.log(person instanceof PersonClass); // true
console.log(person instanceof Object); // true

console.log(typeof PersonClass); // "function"
console.log(typeof PersonClass.prototype.sayName); // "function"

As this example demonstrates, class expressions do not require identi-
fiers after class. Aside from the syntax, class expressions are functionally
equivalent to class declarations. In anonymous class expressions, as in the
preceding example, PersonClass.name is an empty string. When you’re using a
class declaration, PersonClass.name would be the "PersonClass" string.

Whether you use class declarations or class expressions is mostly a
matter of style. Unlike function declarations and function expressions, class
declarations and class expressions are not hoisted, so your choice has little
bearing on the code’s runtime behavior. The only significant difference
is that anonymous class expressions have a name property that is an empty
string, whereas class declarations always have a name property equal to the
class name (for instance, PersonClass.name is "PersonClass" when you’re using
a class declaration).

Named Class Expressions
The previous example used an anonymous class expression, but just like
function expressions, you can also name class expressions. To do so, include
an identifier after the class keyword, like this:

let PersonClass = class PersonClass2 {

 // equivalent of the PersonType constructor
 constructor(name) {
 this.name = name;
 }

 // equivalent of PersonType.prototype.sayName
 sayName() {
 console.log(this.name);
 }
};

console.log(typeof PersonClass); // "function"
console.log(typeof PersonClass2); // "undefined"

Introducing JavaScript Classes 171

In this example, the class expression is named PersonClass2. The
PersonClass2 identifier exists only within the class definition so it can be
used inside class methods (such as the sayName() method). Outside the
class, typeof PersonClass2 is "undefined" because no PersonClass2 binding
exists there; to understand why, look at an equivalent declaration that
doesn’t use classes:

// direct equivalent of PersonClass named class expression
let PersonClass = (function() {

 "use strict";

 const PersonClass2 = function(name) {

 // make sure the function was called with new
 if (typeof new.target === "undefined") {
 throw new Error("Constructor must be called with new.");
 }

 this.name = name;
 }

 Object.defineProperty(PersonClass2.prototype, "sayName", {
 value: function() {

 // make sure the method wasn't called with new
 if (typeof new.target !== "undefined") {
 throw new Error("Method cannot be called with new.");
 }

 console.log(this.name);
 },
 enumerable: false,
 writable: true,
 configurable: true
 });

 return PersonClass2;
}());

Creating a named class expression slightly changes what’s happening
in the JavaScript engine. For class declarations, the outer binding (defined
with let) has the same name as the inner binding (defined with const). A
named class expression uses its name in the const definition, so PersonClass2
is defined for use only inside the class.

Although named class expressions behave differently from named func-
tion expressions, there are still many similarities between the two. Both can
be used as values, and that opens several possibilities, which I’ll cover next.

172 Chapter 9

Classes as First-Class Citizens
In programming, a first-class citizen is a value that can be passed into a func-
tion, returned from a function, and assigned to a variable. JavaScript func-
tions are first-class citizens (also called first-class functions), and they’re part
of what makes JavaScript unique.

ECMAScript 6 continues this tradition by making classes first-class
citizens as well, allowing you to use classes in many different ways. For
example, you can pass them into functions as arguments:

function createObject(classDef) {
 return new classDef();
}

let obj = createObject(class {

 sayHi() {
 console.log("Hi!");
 }
});

obj.sayHi(); // "Hi!"

In this example, the createObject() function is called with an anony-
mous class expression as an argument, creates an instance of that class with
new, and returns the instance. The variable obj then stores the returned
instance.

Another use of class expressions is creating singletons by immediately
invoking the class constructor. To do so, you must use new with a class
expression and include parentheses at the end. For example:

let person = new class {

 constructor(name) {
 this.name = name;
 }

 sayName() {
 console.log(this.name);
 }

}("Nicholas");

person.sayName(); // "Nicholas"

Here, an anonymous class expression is created and then executed
immediately. This pattern allows you to use the class syntax for creating
singletons without leaving a class reference available for inspection. The
parentheses at the end of the class expression indicate that you’re calling a
function and also allow you to pass in an argument.

Introducing JavaScript Classes 173

The examples in this chapter so far have focused on classes with
methods. But you can also create accessor properties on classes using a
syntax similar to object literals.

Accessor Properties
Although you should create own properties inside class constructors, classes
allow you to define accessor properties on the prototype. To create a getter,
use the keyword get followed by a space, followed by an identifier; to create
a setter, do the same using the keyword set, as shown here:

class CustomHTMLElement {

 constructor(element) {
 this.element = element;
 }

 get html() {
 return this.element.innerHTML;
 }

 set html(value) {
 this.element.innerHTML = value;
 }
}

var descriptor = Object.getOwnPropertyDescriptor(CustomHTMLElement.prototype, "html");
console.log("get" in descriptor); // true
console.log("set" in descriptor); // true
console.log(descriptor.enumerable); // false

In this code, the CustomHTMLElement class is made as a wrapper around
an existing DOM element. It has a getter and setter for html that delegates
to the innerHTML method on the element. This accessor property is created
on the CustomHTMLElement.prototype and, just like any other method would be,
is created as nonenumerable. The equivalent nonclass representation looks
like this:

// direct equivalent to previous example
let CustomHTMLElement = (function() {

 "use strict";

 const CustomHTMLElement = function(element) {

 // make sure the function was called with new
 if (typeof new.target === "undefined") {
 throw new Error("Constructor must be called with new.");
 }

 this.element = element;
 }

174 Chapter 9

 Object.defineProperty(CustomHTMLElement.prototype, "html", {
 enumerable: false,
 configurable: true,
 get: function() {
 return this.element.innerHTML;
 },
 set: function(value) {
 this.element.innerHTML = value;
 }
 });

 return CustomHTMLElement;
}());

As in previous examples, this one shows just how much code you can
omit by using a class instead of the nonclass equivalent. The html acces-
sor property definition alone is almost the size of the equivalent class
declaration.

Computed Member Names
Even more similarities exist between object literals and classes. Class methods
and accessor properties can also have computed names. Instead of using an
identifier, use square brackets around an expression, which is the same syn-
tax you use for object literal computed names. For example:

let methodName = "sayName";

class PersonClass {

 constructor(name) {
 this.name = name;
 }

 [methodName]() {
 console.log(this.name);
 }
};

let me = new PersonClass("Nicholas");
me.sayName(); // "Nicholas"

This version of PersonClass uses a variable to assign a name to a method
inside its definition. The string "sayName" is assigned to the methodName variable,
and then methodName is used to declare the method. The sayName() method is
later accessed directly.

Introducing JavaScript Classes 175

Accessor properties can use computed names in the same way, like this:

let propertyName = "html";

class CustomHTMLElement {

 constructor(element) {
 this.element = element;
 }

 get [propertyName]() {
 return this.element.innerHTML;
 }

 set [propertyName](value) {
 this.element.innerHTML = value;
 }
}

Here, the getter and setter for html are set using the propertyName vari-
able. Accessing the property by using .html only affects the definition.

You’ve seen several similarities between classes and object literals,
including methods, accessor properties, and computed names. There’s
just one more similarity I need to cover, and that is generators.

Generator Methods
Recall from Chapter 8 that you can define a generator on an object lit-
eral by prepending an asterisk (*) to the method name. The same syntax
works for classes as well, allowing any method to be a generator. Here’s an
example:

class MyClass {

 *createIterator() {
 yield 1;
 yield 2;
 yield 3;
 }

}

let instance = new MyClass();
let iterator = instance.createIterator();

This code creates a class called MyClass with a createIterator() genera-
tor method. The method returns an iterator whose values are hardcoded
into the generator. Generator methods are useful when you have an object
that represents a collection of values and you want to iterate over those

176 Chapter 9

values easily. Arrays, sets, and maps all have multiple generator methods to
account for the different ways developers need to interact with their items.

Although generator methods are useful, defining a default iterator for
your class is much more helpful if the class represents a collection of values.
You can define the default iterator for a class by using Symbol.iterator to
define a generator method:

class Collection {

 constructor() {
 this.items = [];
 }

 *[Symbol.iterator]() {
 yield *this.items.values();
 }
}

var collection = new Collection();
collection.items.push(1);
collection.items.push(2);
collection.items.push(3);

for (let x of collection) {
 console.log(x);
}

// Output:
// 1
// 2
// 3

This example uses a computed name for a generator method that
delegates to the values() iterator of the this.items array. Any class that
manages a collection of values should include a default iterator because
some collection-specific operations require collections they operate on to
have an iterator. Now you can use any instance of Collection directly in a
for-of loop or with the spread operator.

Adding methods and accessor properties to a class prototype is useful
when you want them to show up on object instances. If, on the other hand,
you want methods or accessor properties on the class, you’ll need to use
static members.

Static Members
Adding methods directly onto constructors to simulate static members is
another common pattern in ECMAScript 5 and earlier. For example:

function PersonType(name) {
 this.name = name;
}

Introducing JavaScript Classes 177

// static method
PersonType.create = function(name) {
 return new PersonType(name);
};

// instance method
PersonType.prototype.sayName = function() {
 console.log(this.name);
};

var person = PersonType.create("Nicholas");

In other programming languages, the factory method called
PersonType.create() would be considered a static method, because it
doesn’t depend on an instance of PersonType for its data. ECMAScript 6
classes simplify the creation of static members by using the formal static
annotation before the method or accessor property name. For instance,
here’s the class equivalent of the preceding example:

class PersonClass {

 // equivalent of the PersonType constructor
 constructor(name) {
 this.name = name;
 }

 // equivalent of PersonType.prototype.sayName
 sayName() {
 console.log(this.name);
 }

 // equivalent of PersonType.create
 static create(name) {
 return new PersonClass(name);
 }
}

let person = PersonClass.create("Nicholas");

The PersonClass definition has a single static method called create().
The method syntax is the same as the syntax used for sayName() except for
the static keyword. You can use the static keyword on any method or acces-
sor property definition within a class. The only restriction is that you can’t
use static with the constructor method definition.

n o t e Static members are not accessible from instances. You must always access static
members from the class directly.

178 Chapter 9

Inheritance with Derived Classes
Prior to ECMAScript 6, implementing inheritance with custom types was an
extensive process. Proper inheritance required multiple steps. For instance,
consider this example:

function Rectangle(length, width) {
 this.length = length;
 this.width = width;
}

Rectangle.prototype.getArea = function() {
 return this.length * this.width;
};

function Square(length) {
 Rectangle.call(this, length, length);
}

Square.prototype = Object.create(Rectangle.prototype, {
 constructor: {
 value: Square,
 enumerable: true,
 writable: true,
 configurable: true
 }
});

var square = new Square(3);

console.log(square.getArea()); // 9
console.log(square instanceof Square); // true
console.log(square instanceof Rectangle); // true

Square inherits from Rectangle, and to do so, it must overwrite
Square.prototype with a new object created from Rectangle.prototype as
well as call the Rectangle.call() method. These steps often confused
JavaScript newcomers and were a source of errors for experienced
developers.

Classes make inheritance easier to implement by using the familiar
extends keyword to specify the function from which the class should inherit.
The prototypes are automatically adjusted, and you can access the base
class constructor by calling the super() method. Here’s the ECMAScript 6
equivalent of the preceding example:

class Rectangle {
 constructor(length, width) {
 this.length = length;
 this.width = width;
 }

Introducing JavaScript Classes 179

 getArea() {
 return this.length * this.width;
 }
}

class Square extends Rectangle {
 constructor(length) {

 // equivalent of Rectangle.call(this, length, length)
 super(length, length);
 }
}

var square = new Square(3);

console.log(square.getArea()); // 9
console.log(square instanceof Square); // true
console.log(square instanceof Rectangle); // true

This time, the Square class inherits from Rectangle using the extends key-
word. The Square constructor uses super() to call the Rectangle constructor
with the specified arguments. Note that unlike the ECMAScript 5 version
of the code, the identifier Rectangle is only used within the class declaration
(after extends).

Classes that inherit from other classes are referred to as derived classes.
Derived classes require you to use super() if you specify a constructor; if you
don’t, an error will occur. If you choose not to use a constructor, super()
is automatically called for you with all arguments upon creating a new
instance of the class. For instance, the following two classes are identical:

class Square extends Rectangle {
 // no constructor
}

// is equivalent to

class Square extends Rectangle {
 constructor(...args) {
 super(...args);
 }
}

The second class in this example shows the equivalent of the default
constructor for all derived classes. All of the arguments are passed, in order,
to the base class constructor. In this case, the functionality isn’t quite cor-
rect because the Square constructor needs only one argument, so it’s best to
manually define the constructor.

180 Chapter 9

Shadowing Class Methods
The methods on derived classes always shadow methods of the same name
on the base class. For instance, you can add getArea() to Square to redefine
that functionality:

class Square extends Rectangle {
 constructor(length) {
 super(length, length);
 }

 // override and shadow Rectangle.prototype.getArea()
 getArea() {
 return this.length * this.length;
 }
}

Because the getArea() method is defined as part of Square, the method
Rectangle.prototype.getArea() will no longer be called by any instances of
Square. Of course, you can always decide to call the base class version of the
method by using the super.getArea() method, like this:

class Square extends Rectangle {
 constructor(length) {
 super(length, length);
 }

 // override, shadow, and call Rectangle.prototype.getArea()
 getArea() {
 return super.getArea();
 }
}

not e S on uSIng Supe r()

Keep the following key points in mind when you’re using super():

•	 You can only use super() in a derived class constructor. If you try to use it
in a non derived class (a class that doesn’t use extends) or a function, it will
throw an error.

•	 You must call super() before accessing this in the constructor. Because
super() is responsible for initializing this, attempting to access this
before calling super() results in an error.

•	 The only way to avoid calling super() is to return an object from the class
constructor.

Introducing JavaScript Classes 181

Using super in this way works the same as the super references dis-
cussed in Chapter 4 (see “Easy Prototype Access with Super References”
on page 77). The this value is automatically set correctly so you can
make a simple method call.

Inherited Static Members
If a base class has static members, those static members are also available
on the derived class. Inheritance works like that in other languages, but this
is a new concept in JavaScript. Here’s an example:

class Rectangle {
 constructor(length, width) {
 this.length = length;
 this.width = width;
 }

 getArea() {
 return this.length * this.width;
 }

 static create(length, width) {
 return new Rectangle(length, width);
 }
}

class Square extends Rectangle {
 constructor(length) {

 // equivalent of Rectangle.call(this, length, length)
 super(length, length);
 }
}

var rect = Square.create(3, 4);

console.log(rect instanceof Rectangle); // true
console.log(rect.getArea()); // 12
console.log(rect instanceof Square); // false

In this code, a new static create() method is added to the Rectangle
class. Through inheritance, that method is available as Square.create() and
behaves like the Rectangle.create() method.

Derived Classes from Expressions
Perhaps the most powerful aspect of derived classes in ECMAScript 6 is the
ability to derive a class from an expression. You can use extends with any
expression as long as the expression resolves to a function with [[Construct]]
and a prototype. For instance:

function Rectangle(length, width) {
 this.length = length;

182 Chapter 9

 this.width = width;
}

Rectangle.prototype.getArea = function() {
 return this.length * this.width;
};

class Square extends Rectangle {
 constructor(length) {
 super(length, length);
 }
}

var x = new Square(3);
console.log(x.getArea()); // 9
console.log(x instanceof Rectangle); // true

Rectangle is defined as an ECMAScript 5–style constructor, and Square is
a class. Because Rectangle has [[Construct]] and a prototype, the Square class
can still inherit directly from it.

Accepting any type of expression after extends offers powerful possibili-
ties, such as dynamically determining what to inherit from. For example:

function Rectangle(length, width) {
 this.length = length;
 this.width = width;
}

Rectangle.prototype.getArea = function() {
 return this.length * this.width;
};

function getBase() {
 return Rectangle;
}

class Square extends getBase() {
 constructor(length) {
 super(length, length);
 }
}

var x = new Square(3);
console.log(x.getArea()); // 9
console.log(x instanceof Rectangle); // true

The getBase() function is called directly as part of the class declaration.
It returns Rectangle, making this example functionally equivalent to the pre-
vious one. And because you can determine the base class dynamically, it’s

Introducing JavaScript Classes 183

possible to create different inheritance approaches. For instance, you can
effectively create mixins, like this:

let SerializableMixin = {
 serialize() {
 return JSON.stringify(this);
 }
};

let AreaMixin = {
 getArea() {
 return this.length * this.width;
 }
};

function mixin(...mixins) {
 var base = function() {};
 Object.assign(base.prototype, ...mixins);
 return base;
}

class Square extends mixin(AreaMixin, SerializableMixin) {
 constructor(length) {
 super();
 this.length = length;
 this.width = length;
 }
}

var x = new Square(3);
console.log(x.getArea()); // 9
console.log(x.serialize()); // "{"length":3,"width":3}"

This example uses mixins instead of classical inheritance. The mixin()
function takes any number of arguments that represent mixin objects.
It creates a function called base and assigns the properties of each mixin
object to the prototype. The function is then returned so Square can use
extends. Keep in mind that because extends is still used, you’re required to
call super() in the constructor.

The instance of Square has getArea() from AreaMixin and serialize from
SerializableMixin. This is accomplished through prototypal inheritance. The
mixin() function dynamically populates the prototype of a new function
with all of the own properties of each mixin. Keep in mind that if multiple
mixins have the same property, only the last property added will remain.

n o t e You can use any expression after extends, but not all expressions result in a valid
class. Specifically, using null or a generator function (covered in Chapter 8) after
extends will cause errors. In these cases, attempting to create a new instance of the
class will throw an error because there is no [[Construct]] to call.

184 Chapter 9

Inheriting from Built-Ins
For almost as long as JavaScript arrays have existed, developers have
wanted to create their own special array types through inheritance. In
ECMAScript 5 and earlier, this wasn’t possible. Attempting to use classical
inheritance didn’t result in functioning code. For example:

// built-in array behavior
var colors = [];
colors[0] = "red";
console.log(colors.length); // 1

colors.length = 0;
console.log(colors[0]); // undefined

// trying to inherit from array in ES5

function MyArray() {
 Array.apply(this, arguments);
}

MyArray.prototype = Object.create(Array.prototype, {
 constructor: {
 value: MyArray,
 writable: true,
 configurable: true,
 enumerable: true
 }
});

var colors = new MyArray();
colors[0] = "red";
console.log(colors.length); // 0

colors.length = 0;
console.log(colors[0]); // "red"

The console.log() output at the end of this code shows how using the
classical form of JavaScript inheritance on an array results in unexpected
behavior. The length and numeric properties on an instance of MyArray don’t
behave the same way they do for the built-in array because this functionality
isn’t covered by either Array.apply() or assigning the prototype.

One goal of ECMAScript 6 classes is to allow inheritance from all built-
ins. To accomplish this, the inheritance model of classes is slightly different
than the classical inheritance model found in ECMAScript 5 and earlier, in
two significant ways.

In ECMAScript 5 classical inheritance, the value of this is first created
by the derived type (for example, MyArray) and then the base type construc-
tor (like the Array.apply() method) is called. That means this starts out as
an instance of MyArray and then is decorated with additional properties from
Array.

Introducing JavaScript Classes 185

Conversely, in ECMAScript 6 class-based inheritance, the value of this
is first created by the base (Array) and then modified by the derived class
constructor (MyArray). The result is that this starts with all the built-in func-
tionality of the base and correctly receives all functionality related to it.

The following example shows a class-based special array in action:

class MyArray extends Array {
 // empty
}

var colors = new MyArray();
colors[0] = "red";
console.log(colors.length); // 1

colors.length = 0;
console.log(colors[0]); // undefined

MyArray inherits directly from Array and therefore works like Array.
Interacting with numeric properties updates the length property, and
manipulating the length property updates the numeric properties. That
means you can properly inherit from Array to create your own derived
array classes and inherit from other built-ins as well. With all this added
functionality, ECMAScript 6 and derived classes have effectively removed
the last special case of inheriting from built-ins, but that case is still worth
exploring.

The Symbol.species Property
A convenient aspect of inheriting from built-ins is that any method that
returns an instance of the built-in will automatically return a derived class
instance instead. So, if you have a derived class called MyArray that inher-
its from Array, methods such as slice() return an instance of MyArray. For
example:

class MyArray extends Array {
 // empty
}

let items = new MyArray(1, 2, 3, 4),
 subitems = items.slice(1, 3);

console.log(items instanceof MyArray); // true
console.log(subitems instanceof MyArray); // true

In this code, the slice() method returns a MyArray instance. The slice()
method is inherited from Array and returns an instance of Array normally.
Behind the scenes, the Symbol.species property is actually making this
change.

186 Chapter 9

The Symbol.species well-known symbol is used to define a static acces-
sor property that returns a function. That function is a constructor to
use whenever an instance of the class must be created inside an instance
method (instead of using the constructor). The following built-in types
have Symbol.species defined:

•	 Array

•	 ArrayBuffer (discussed in Chapter 10)

•	 Map

•	 Promise

•	 RegExp

•	 Set

•	 Typed arrays (discussed in Chapter 10)

Each type in the list has a default Symbol.species property that returns
this, meaning the property will always return the constructor function. If
you implemented that functionality on a custom class, the code would look
like this:

// several built-in types use species similar to this
class MyClass {
 static get [Symbol.species]() {
 return this;
 }

 constructor(value) {
 this.value = value;
 }

 clone() {
 return new this.constructor[Symbol.species](this.value);
 }
}

In this example, the Symbol.species well-known symbol is used to assign
a static accessor property to MyClass. Note that there’s a getter without a
setter, because changing the species of a class isn’t possible. Any call to
this.constructor[Symbol.species] returns MyClass. The clone() method uses
that definition to return a new instance rather than directly using MyClass,
which allows derived classes to override that value. For example:

class MyClass {
 static get [Symbol.species]() {
 return this;
 }

 constructor(value) {
 this.value = value;
 }

Introducing JavaScript Classes 187

 clone() {
 return new this.constructor[Symbol.species](this.value);
 }
}

class MyDerivedClass1 extends MyClass {
 // empty
}

class MyDerivedClass2 extends MyClass {
 static get [Symbol.species]() {
 return MyClass;
 }
}

let instance1 = new MyDerivedClass1("foo"),
 clone1 = instance1.clone(),
 instance2 = new MyDerivedClass2("bar"),
 clone2 = instance2.clone();

console.log(clone1 instanceof MyClass); // true
console.log(clone1 instanceof MyDerivedClass1); // true
console.log(clone2 instanceof MyClass); // true
console.log(clone2 instanceof MyDerivedClass2); // false

Here, MyDerivedClass1 inherits from MyClass and doesn’t change the
Symbol.species property. When clone() is called, it returns an instance
of MyDerivedClass1 because this.constructor[Symbol.species] returns
MyDerivedClass1. The MyDerivedClass2 class inherits from MyClass and
overrides Symbol.species to return MyClass. When clone() is called on an
instance of MyDerivedClass2, the return value is an instance of MyClass. Using
Symbol.species, any derived class can determine what type of value should
be returned when a method returns an instance.

For instance, Array uses Symbol.species to specify the class to use for
methods that return an array. In a class derived from Array, you can deter-
mine the type of object returned from the inherited methods, such as:

class MyArray extends Array {
 static get [Symbol.species]() {
 return Array;
 }
}

let items = new MyArray(1, 2, 3, 4),
 subitems = items.slice(1, 3);

console.log(items instanceof MyArray); // true
console.log(subitems instanceof Array); // true
console.log(subitems instanceof MyArray); // false

188 Chapter 9

This code overrides Symbol.species on MyArray, which inherits from Array.
All of the inherited methods that return arrays will now use an instance of
Array instead of MyArray.

In general, you should use the Symbol.species property whenever you
might want to use this.constructor in a class method. Doing so allows derived
classes to override the return type easily. Additionally, if you’re creating
derived classes from a class that has Symbol.species defined, be sure to use
that value instead of the constructor.

Using new.target in Class Constructors
In Chapter 3, you learned about new.target and how its value changes
depending on how a function is called. You can also use new.target in class
constructors to determine how the class is being invoked. In the simple
case, new.target is equal to the constructor function for the class, as in this
example:

class Rectangle {
 constructor(length, width) {
 console.log(new.target === Rectangle);
 this.length = length;
 this.width = width;
 }
}

// new.target is Rectangle
var obj = new Rectangle(3, 4); // outputs true

This code shows that new.target is equivalent to Rectangle when new
Rectangle(3, 4) is called. Class constructors can’t be called without new, so
the new.target property is always defined inside class constructors. But the
value may not always be the same. Consider this code:

class Rectangle {
 constructor(length, width) {
 console.log(new.target === Rectangle);
 this.length = length;
 this.width = width;
 }
}

class Square extends Rectangle {
 constructor(length) {
 super(length, length)
 }
}

// new.target is Square
var obj = new Square(3); // outputs false

Introducing JavaScript Classes 189

Square is calling the Rectangle constructor, so new.target is equal to Square
when the Rectangle constructor is called. This is important because it gives
each constructor the ability to alter its behavior based on how it’s being
called. For instance, you can create an abstract base class (one that can’t
be instantiated directly) by using new.target as follows:

// abstract base class
class Shape {
 constructor() {
 if (new.target === Shape) {
 throw new Error("This class cannot be instantiated directly.")
 }
 }
}

class Rectangle extends Shape {
 constructor(length, width) {
 super();
 this.length = length;
 this.width = width;
 }
}

var x = new Shape(); // throws an error

var y = new Rectangle(3, 4); // no error
console.log(y instanceof Shape); // true

In this example, the Shape class constructor throws an error when-
ever new.target is Shape, meaning that new Shape() always throws an error.
However, you can still use Shape as a base class, which is what Rectangle does.
The super() call executes the Shape constructor and new.target is equal to
Rectangle so the constructor continues without error.

n o t e Because classes can’t be called without new, the new.target property is never undefined
inside a class constructor.

Summary
ECMAScript 6 classes make inheritance in JavaScript easier to use, so you
don’t need to disregard any existing understanding of inheritance you
might have from other languages. ECMAScript 6 classes started as syntactic
sugar for the classical inheritance model in ECMAScript 5 but added sev-
eral features to reduce mistakes.

ECMAScript 6 classes work with prototypal inheritance by defining
nonstatic methods on the class prototype, whereas static methods end up
on the constructor. All methods are nonenumerable, which better matches
the behavior of built-in objects whose methods are typically nonenumerable

190 Chapter 9

by default. Additionally, class constructors can’t be called without new,
ensuring that you can’t accidentally call a class as a function.

Class-based inheritance allows you to derive a class from another class,
function, or expression. This capability means you can call a function to
determine the correct base to inherit from, allowing you to use mixins and
other different composition patterns to create a new class. Inheritance works
in such a way that inheriting from built-in objects like Array is now possible
and works as expected.

You can use new.target in class constructors to behave differently depend-
ing on how the class is called. The most common use is to create an abstract
base class that throws an error when instantiated directly but still allows
inheritance via other classes.

Overall, classes are an important addition to JavaScript. They provide
a more concise syntax and better functionality for defining custom object
types in a safe, consistent manner.

10
I m p r o v e d A r r A y C A p A b I l I t I e s

The array is a foundational JavaScript object.
But while other aspects of JavaScript have

evolved over time, arrays remained the same
until ECMAScript 5 introduced several methods

to make them easier to use. ECMAScript 6 continues to
improve arrays by adding a lot more functionality, such
as new creation methods, several useful convenience methods, and the abil-
ity to make typed arrays. This chapter walks you through those changes in
detail.

Creating Arrays
Prior to ECMAScript 6, the two primary ways to create arrays were the Array
constructor and array literal syntax. Both approaches required listing array
items individually and were otherwise fairly limited. Options for converting
an array-like object (that is, an object with numeric indexes and a length

192 Chapter 10

property) into an array were also limited and often required extra code. To
make JavaScript arrays easier to create, ECMAScript 6 has the Array.of()
and Array.from() methods.

The Array.of() Method
One reason ECMAScript 6 added new creation methods to JavaScript was
to help developers avoid a quirk of creating arrays with the Array construc-
tor. The Array constructor actually behaves differently based on the type
and number of arguments passed to it. For example:

let items = new Array(2);
console.log(items.length); // 2
console.log(items[0]); // undefined
console.log(items[1]); // undefined

items = new Array("2");
console.log(items.length); // 1
console.log(items[0]); // "2"

items = new Array(1, 2);
console.log(items.length); // 2
console.log(items[0]); // 1
console.log(items[1]); // 2

items = new Array(3, "2");
console.log(items.length); // 2
console.log(items[0]); // 3
console.log(items[1]); // "2"

When the Array constructor is passed a single numeric value, the array’s
length property is set to that value. If a single nonnumeric value is passed,
that value becomes the one and only item in the array. If multiple values
are passed (numeric or not), those values become items in the array. This
behavior is confusing and risky, because you might not always be aware of
the type of data being passed.

ECMAScript 6 introduces Array.of() to solve this problem. The Array.of()
method works similarly to the Array constructor but has no special case
regarding a single numeric value. The Array.of() method always creates
an array containing its arguments regardless of the number of arguments
or the argument types. Here are some examples that use the Array.of()
method:

let items = Array.of(1, 2);
console.log(items.length); // 2
console.log(items[0]); // 1
console.log(items[1]); // 2

items = Array.of(2);
console.log(items.length); // 1
console.log(items[0]); // 2

Improved Array Capabilities 193

items = Array.of("2");
console.log(items.length); // 1
console.log(items[0]); // "2"

To create an array with the Array.of() method, just pass it the values you
want in your array. This first example creates an array containing two num-
bers, the second array contains one number, and the last array contains one
string. This approach is similar to using an array literal, and you can use an
array literal instead of Array.of() for native arrays most of the time. But if
you ever need to pass the Array constructor into a function, you might want
to pass Array.of() instead to ensure consistent behavior. For example:

function createArray(arrayCreator, value) {
 return arrayCreator(value);
}

let items = createArray(Array.of, value);

In this code, the createArray() function accepts an array creator func-
tion and a value to insert into the array. You can pass Array.of() as the first
argument to createArray() to create a new array. It would be dangerous to
pass Array directly if you cannot guarantee that value won’t be a number.

N o t e The Array.of() method does not use the Symbol.species property (see page 185)
to determine the type of return value. Instead, it uses the current constructor (this
inside the of() method) to determine the correct data type to return.

The Array.from() Method
Converting nonarray objects into actual arrays has always been cumber-
some in JavaScript. For instance, if you have an arguments object (which is
array-like) and want to use it like an array, you’d need to convert it first. To
convert an array-like object to an array in ECMAScript 5, you’d write a func-
tion like the one in this example:

function makeArray(arrayLike) {
 var result = [];

 for (var i = 0, len = arrayLike.length; i < len; i++) {
 result.push(arrayLike[i]);
 }

 return result;
}

function doSomething() {
 var args = makeArray(arguments);

 // use args
}

194 Chapter 10

This approach manually creates a result array and copies each item
from arguments into the new array. Although this approach works, it
takes a decent amount of code to perform a relatively simple operation.
Eventually, developers discovered they could reduce the amount of code
they used by calling the native slice() method for arrays on array-like
objects, like this:

function makeArray(arrayLike) {
 return Array.prototype.slice.call(arrayLike);
}

function doSomething() {
 var args = makeArray(arguments);

 // use args
}

This code is functionally equivalent to the previous example, and
it works because it sets the this value for slice() to the array-like object.
Because slice() needs only numeric indexes and a length property to func-
tion correctly, any array-like object will work.

Even though you don’t have to type as much when using this technique,
calling Array.prototype.slice.call(arrayLike) doesn’t obviously translate
to “Convert arrayLike to an array.” Fortunately, ECMAScript 6 added the
Array.from() method as an obvious, yet clean, way to convert objects into
arrays.

Given either an iterable or an array-like object as the first argument,
the Array.from() method returns an array. Here’s a simple example:

function doSomething() {
 var args = Array.from(arguments);

 // use args
}

The Array.from() call creates a new array based on the items in arguments.
So args is an instance of Array that contains the same values in the same posi-
tions as arguments.

N o t e The Array.from() method also uses this to determine the type of array to return.

Mapping Conversion

If you want to take array conversion a step further, you can provide
Array.from() with a mapping function as a second argument. That func-
tion operates on each value from the array-like object and converts it to
some final form before storing the result at the appropriate index in the
final array. Consider the following example.

Improved Array Capabilities 195

function translate() {
 return Array.from(arguments, (value) => value + 1);
}

let numbers = translate(1, 2, 3);

console.log(numbers); // 2,3,4

Here, Array.from() is passed (value) => value + 1 as a mapping function,
so it adds 1 to each item in the array before storing the item. If the mapping
function is on an object, you can also optionally pass a third argument to
Array.from() that represents the this value for the mapping function:

let helper = {
 diff: 1,

 add(value) {
 return value + this.diff;
 }
};

function translate() {
 return Array.from(arguments, helper.add, helper);
}

let numbers = translate(1, 2, 3);

console.log(numbers); // 2,3,4

This example passes helper.add() as the mapping function for the con-
version. Because helper.add() uses the this.diff property, you need to pro-
vide the third argument to Array.from() specifying the value of this. Thanks
to the third argument, Array.from() can easily convert data without calling
bind() or specifying the this value in some other way.

Use on Iterables

The Array.from() method works on array-like objects and iterables. That
means the method can convert any object with a Symbol.iterator property
into an array. For example:

let numbers = {
 *[Symbol.iterator]() {
 yield 1;
 yield 2;
 yield 3;
 }
};

let numbers2 = Array.from(numbers, (value) => value + 1);

console.log(numbers2); // 2,3,4

196 Chapter 10

Because the numbers object is an iterable, you can pass numbers directly
to Array.from() to convert its values into an array. The mapping function
adds 1 to each number, so the resulting array contains 2, 3, and 4 instead
of 1, 2, and 3.

N o t e If an object is array-like and an iterable, the iterator is used by Array.from() to deter-
mine the values to convert.

New Methods on All Arrays
Continuing the trend from ECMAScript 5, ECMAScript 6 adds several new
methods to arrays. The find() and findIndex() methods are meant to aid
developers using arrays with any values, whereas fill() and copyWithin()
are inspired by use cases for typed arrays, a form of array introduced in
ECMAScript 6 that uses only numbers.

The find() and findIndex() Methods
Prior to ECMAScript 5, searching through arrays was cumbersome because
there were no built-in methods for doing so. ECMAScript 5 added the
indexOf() and lastIndexOf() methods, which finally allowed developers to
search for specific values inside an array. These two methods were a big
improvement, yet they were still fairly limited because you could search
for only one value at a time. For example, if you wanted to find the first
even number in a series of numbers, you’d need to write your own code
to do so. ECMAScript 6 solved that problem by introducing the find() and
findIndex() methods.

Both find() and findIndex() accept two arguments: a callback function
and an optional value to use for this inside the callback function. The
callback function is passed an array element, the index of that element in
the array, and the actual array—the same arguments passed to methods
like map() and forEach(). The callback should return true if the given value
matches some criteria you define. Both find() and findIndex() also stop
searching the array the first time the callback function returns true.

The only difference between these methods is that find() returns the
value, whereas findIndex() returns the index at which the value was found.
Here’s an example to demonstrate:

let numbers = [25, 30, 35, 40, 45];

console.log(numbers.find(n => n > 33)); // 35
console.log(numbers.findIndex(n => n > 33)); // 2

This code calls find() and findIndex() to locate the first value in the
numbers array that is greater than 33. The call to find() returns 35 and
findIndex() returns 2, the location of 35 in the numbers array.

Improved Array Capabilities 197

Both find() and findIndex() are useful to find an array element that
matches a condition rather than a value. If you only want to find a value,
indexOf() and lastIndexOf() are better choices.

The fill() Method
The fill() method fills one or more array elements with a specific value.
When passed a value, fill() overwrites all the values in an array with that
value. For example:

let numbers = [1, 2, 3, 4];

numbers.fill(1);

console.log(numbers.toString()); // 1,1,1,1

Here, the call to numbers.fill(1) changes all elements in numbers to 1. If
you want to change only some of the elements rather than all of them, you
can optionally include a start index and an exclusive end index, like this:

let numbers = [1, 2, 3, 4];

numbers.fill(1, 2);

console.log(numbers.toString()); // 1,2,1,1

numbers.fill(0, 1, 3);

console.log(numbers.toString()); // 1,0,0,1

In the numbers.fill(1, 2) call, the 2 argument starts filling elements at
index 2. The exclusive end index isn’t specified with a third argument, so
numbers.length is used as the end index, meaning the last two elements in
numbers are filled with 1. The numbers.fill(0, 1, 3) operation fills array ele-
ments at indexes 1 and 2 with 0. Calling fill() with the second and third
arguments allows you to fill multiple array elements at once without over-
writing the entire array.

N o t e If either the start or end index is negative, those values are added to the array’s length to
determine the final location. For instance, a start location of -1 gives array.length - 1
as the index, where array is the array on which fill() is called.

The copyWithin() Method
The copyWithin() method is similar to fill() in that it changes multiple
array elements at the same time. However, instead of specifying a single
value to assign to array elements, copyWithin() lets you copy array element
values from the array. To accomplish that, you need to pass two arguments
to the copyWithin() method: the index where the method should start filling
values and the index where the values to be copied begin.

198 Chapter 10

For instance, to copy the values from the first two elements in an array
to the last two items in the array, you can do the following:

let numbers = [1, 2, 3, 4];

// paste values into array starting at index 2
// copy values from array starting at index 0
numbers.copyWithin(2, 0);

console.log(numbers.toString()); // 1,2,1,2

This code pastes values into numbers beginning from index 2, so indexes 2
and 3 will be overwritten. Passing 0 as the second argument to copyWithin()
starts copying values from index 0 and continues until there are no more
elements to copy into.

By default, copyWithin() always copies values up to the end of the array,
but you can provide an optional third argument to limit how many elements
will be overwritten. That third argument is an exclusive end index at which
copying of values stops. Here’s how that looks in code:

let numbers = [1, 2, 3, 4];

// paste values into array starting at index 2
// copy values from array starting at index 0
// stop copying values when you hit index 1
numbers.copyWithin(2, 0, 1);

console.log(numbers.toString()); // 1,2,1,4

In this example, only the value in index 0 is copied because the optional
end index is set to 1. The last element in the array remains unchanged.

N o t e As with the fill() method, if you pass a negative number for any argument to the
copyWithin() method, the array’s length is automatically added to that value to deter-
mine the index to use.

The use cases for fill() and copyWithin() may not be obvious to you at
this point. The reason is that these methods originated on typed arrays and
were added to regular arrays for consistency. However, as you’ll learn in the
next section, if you use typed arrays for manipulating the bits of a number,
these methods become a lot more useful.

Typed Arrays
Typed arrays are special-purpose arrays designed to work with numeric
types (not all types, as the name might imply). The origin of typed arrays
can be traced to WebGL, a port of OpenGL ES 2.0 designed for use in web
pages with the <canvas> element. Typed arrays were created as part of the
port to provide fast bitwise arithmetic in JavaScript.

Improved Array Capabilities 199

Arithmetic on native JavaScript numbers was too slow for WebGL
because the numbers were stored in a 64-bit floating-point format and
converted to 32-bit integers as needed. Typed arrays were introduced to
circumvent this limitation and provide better performance for arithmetic
operations. The concept is that any single number can be treated like an
array of bits and thus can use the familiar methods available on JavaScript
arrays.

ECMAScript 6 adopted typed arrays as a formal part of the language to
ensure better compatibility across JavaScript engines and interoperability
with JavaScript arrays. Although the ECMAScript 6 version of typed arrays
is not the same as the WebGL version, enough similarities exist to make the
ECMAScript 6 version an evolution of the WebGL version rather than a dif-
ferent approach.

Numeric Data Types
JavaScript numbers are stored in IEEE 754 format, which uses 64 bits to
store a floating-point representation of the number. This format represents
integers and floats in JavaScript, and the conversion between the two for-
mats happens frequently as numbers change. Typed arrays allow for the
storage and manipulation of eight different numeric types:

•	 Signed 8-bit integer (int8)

•	 Unsigned 8-bit integer (uint8)

•	 Signed 16-bit integer (int16)

•	 Unsigned 16-bit integer (uint16)

•	 Signed 32-bit integer (int32)

•	 Unsigned 32-bit integer (uint32)

•	 32-bit float (float32)

•	 64-bit float (float64)

If you represent a number that fits in an int8 as a normal JavaScript
number, you’ll waste 56 bits. Those bits might better be used to store addi-
tional int8 values or any other number that requires less than 56 bits. Using
bits more efficiently is one of the use cases typed arrays address.

All the operations and objects related to typed arrays are centered on
these eight data types. But to use them, you’ll need to create an array buffer
to store the data.

N o t e In this book, I refer to the eight data types using the abbreviations I showed in paren-
theses. Those abbreviations don’t appear in actual JavaScript code; they’re just short-
hand for the much longer descriptions.

Array Buffers
The foundation for all typed arrays is an array buffer, which is a memory
location that can contain a specified number of bytes. Creating an array

200 Chapter 10

buffer is akin to calling malloc() in C to allocate memory without specifying
what the memory block contains. You can create an array buffer by using
the ArrayBuffer constructor as follows:

let buffer = new ArrayBuffer(10); // allocate 10 bytes

Just pass the number of bytes the array buffer should contain when
you call the constructor. This let statement creates an array buffer 10 bytes
long. After an array buffer is created, you can retrieve the number of bytes
in it by checking the byteLength property:

let buffer = new ArrayBuffer(10); // allocate 10 bytes
console.log(buffer.byteLength); // 10

You can also use the slice() method to create a new array buffer that
contains part of an existing array buffer. The slice() method works like
the slice() method on arrays: you pass it the start index and end index as
arguments, and it returns a new ArrayBuffer instance composed of those ele-
ments from the original. For example:

let buffer = new ArrayBuffer(10); // allocate 10 bytes
let buffer2 = buffer.slice(4, 6);
console.log(buffer2.byteLength); // 2

In this code, buffer2 is created by extracting the bytes at indexes 4 and 5.
Similar to when you call the array version of this method, the second argu-
ment to slice() is exclusive.

Of course, creating a storage location isn’t very helpful without being
able to write data into that location. To do so, you’ll need to create a view.

N o t e An array buffer always represents the exact number of bytes specified when it was
created. You can change the data contained within an array buffer but never the
size of the array buffer.

Manipulating Array Buffers with Views
Array buffers represent memory locations, and views are the interfaces
you’ll use to manipulate that memory. A view operates on an array buffer
or a subset of an array buffer’s bytes, reading and writing data in one of the
numeric data types. The DataView type is a generic view on an array buffer
that allows you to operate on all eight numeric data types.

To use a DataView, you first create an instance of ArrayBuffer and use it to
create a new DataView. Here’s an example:

let buffer = new ArrayBuffer(10),
 view = new DataView(buffer);

Improved Array Capabilities 201

The view object in this example has access to all 10 bytes in buffer. You
can also create a view over a portion of a buffer. Just provide a byte offset
and, optionally, the number of bytes to include from that offset. When a
number of bytes isn’t included, the DataView will go from the offset to the
end of the buffer by default. For example:

let buffer = new ArrayBuffer(10),
 view = new DataView(buffer, 5, 2); // cover bytes 5 and 6

Here, view operates only on the bytes at indexes 5 and 6. This approach
allows you to create several views over the same array buffer, which can be
useful if you want to use a single memory location for an entire application
rather than dynamically allocating space as needed.

Retrieving View Information

You can retrieve information about a view by fetching the following read-
only properties:

buffer The array buffer that the view is tied to

byteOffset The second argument to the DataView constructor, if pro-
vided (0 by default)

byteLength The third argument to the DataView constructor, if provided
(the buffer’s byteLength by default)

Using these properties, you can inspect exactly where a view is operat-
ing, like this:

let buffer = new ArrayBuffer(10),
 view1 = new DataView(buffer), // cover all bytes
 view2 = new DataView(buffer, 5, 2); // cover bytes 5 and 6

console.log(view1.buffer === buffer); // true
console.log(view2.buffer === buffer); // true
console.log(view1.byteOffset); // 0
console.log(view2.byteOffset); // 5
console.log(view1.byteLength); // 10
console.log(view2.byteLength); // 2

This code creates view1, a view over the entire array buffer, and view2,
which operates on a small section of the array buffer. These views have
equivalent buffer properties because both work on the same array buffer.
However, the byteOffset and byteLength are different for each view. They
reflect the portion of the array buffer where each view operates.

Of course, reading information about memory isn’t very useful on its
own. You need to write data into and read data out of that memory to get
any benefit.

202 Chapter 10

Reading and Writing Data

For each of JavaScript’s eight numeric data types, the DataView prototype has
a method to write data and a method to read data from an array buffer. The
method names all begin with either set or get and are followed by the data
type abbreviation. For instance, here’s a list of the read and write methods
that can operate on int8 and uint8 values:

getInt8(byteOffset, littleEndian) Read an int8 starting at byteOffset

setInt8(byteOffset, value, littleEndian) Write an int8 starting at
byteOffset

getUint8(byteOffset, littleEndian) Read a uint8 starting at byteOffset

setUint8(byteOffset, value, littleEndian) Write a uint8 starting at
byteOffset

The get methods accept two arguments: the byte offset to read from
and an optional Boolean indicating whether the value should be read
as little-endian. (Little-endian means the least significant byte is at byte 0
instead of in the last byte.) The set methods accept three arguments: the
byte offset to write at, the value to write, and an optional Boolean indicat-
ing whether the value should be stored in little-endian format.

Although I’ve only shown the methods you can use with 8-bit values, the
same methods exist for operating on 16- and 32-bit values. Just replace the 8
in each name with 16 or 32. In addition to all those integer methods, DataView
also has the following read and write methods for floating-point numbers:

getFloat32(byteOffset, littleEndian) Read a float32 starting at byteOffset

setFloat32(byteOffset, value, littleEndian) Write a float32 starting at
byteOffset

getFloat64(byteOffset, littleEndian) Read a float64 starting at byteOffset

setFloat64(byteOffset, value, littleEndian) Write a float64 starting at
byteOffset

The following example shows a set and a get method in action:

let buffer = new ArrayBuffer(2),
 view = new DataView(buffer);

view.setInt8(0, 5);
view.setInt8(1, -1);

console.log(view.getInt8(0)); // 5
console.log(view.getInt8(1)); // -1

This code uses a two-byte array buffer to store two int8 values. The first
value is set at offset 0, and the second is at offset 1, reflecting that each value
spans a full byte (8 bits). Those values are later retrieved from their positions

Improved Array Capabilities 203

with the getInt8() method. Although this example uses int8 values, you can
use any of the eight numeric types with their corresponding methods.

Views are unique because they allow you to read and write in any
format at any point in time regardless of how data was previously stored.
For instance, writing two int8 values and reading the buffer with an int16
method works just fine, as in this example:

let buffer = new ArrayBuffer(2),
 view = new DataView(buffer);

view.setInt8(0, 5);
view.setInt8(1, -1);

console.log(view.getInt16(0)); // 1535
console.log(view.getInt8(0)); // 5
console.log(view.getInt8(1)); // -1

The call to view.getInt16(0) reads all bytes in the view and interprets
those bytes as the number 1535. To understand why this happens, look at
Figure 10-1, which shows what each setInt8() line does to the array buffer.

0 0 0 0 0 0new Array.Buffer(2)

view.setInt8(0, 5)

view.setInt8(1, -1)

Buffer contents

Figure 10-1: The array buffer after two method calls

The array buffer starts with 16 bits that are all 0. Writing 5 to the first
byte with setInt8() introduces a couple of 1s (in 8-bit representation, 5 is
00000101). Writing –1 to the second byte sets all bits in that byte to 1, which
is the two’s complement representation of –1. After the second setInt8() call,
the array buffer contains 16 bits, and getInt16() reads those bits as a single
16-bit integer, which is 1535 in decimal.

The DataView object is perfect for use cases that mix different data types
in this way. However, if you’re only using one specific data type, the type-
specific views are a better choice.

Typed Arrays Are Views

ECMAScript 6 typed arrays are actually type-specific views for array buffers.
Instead of using a generic DataView object to operate on an array buffer, you
can use objects that enforce specific data types. Eight type-specific views
correspond to the eight numeric data types, plus an additional option for
uint8 values. Table 10-1 shows an abbreviated version of the complete list of
type-specific views in section 22.2 of the ECMAScript 6 specification.

204 Chapter 10

Table 10-1: Some Type-Specific Views in ECMAScript 6

Constructor name Element size
(in bytes)

Description Equivalent
C type

Int8Array 1 8-bit two’s complement signed
integer

signed char

Uint8Array 1 8-bit unsigned integer unsigned char

Uint8ClampedArray 1 8-bit unsigned integer (clamped
conversion)

unsigned char

Int16Array 2 16-bit two’s complement signed
integer

short

Uint16Array 2 16-bit unsigned integer unsigned short

Int32Array 4 32-bit two’s complement signed
integer

int

Uint32Array 4 32-bit unsigned integer int

Float32Array 4 32-bit IEEE floating point float

Float64Array 8 64-bit IEEE floating point double

The Constructor name column lists the typed array constructors, and
the other columns describe the data each typed array can contain. A
Uint8ClampedArray is the same as a Uint8Array unless values in the array buffer
are less than 0 or greater than 255. A Uint8ClampedArray converts values less
than 0 to 0 (–1 becomes 0, for instance) and converts values greater than
255 to 255 (so 300 becomes 255).

Typed array operations only work on a particular type of data. For
example, all operations on Int8Array use int8 values. The size of an element
in a typed array also depends on the type of array. Although an element in
an Int8Array is a single byte long, Float64Array uses eight bytes per element.
Fortunately, the elements are accessed using numeric indexes just like regu-
lar arrays, allowing you to avoid the somewhat awkward calls to the set and
get methods of DataView.

Creating Type-Specific Views

Typed array constructors accept multiple types of arguments, so you can
create typed arrays in a few ways. First, you can create a new typed array
by passing the same arguments DataView takes (an array buffer, an optional
byte offset, and an optional byte length). For example:

let buffer = new ArrayBuffer(10),
 view1 = new Int8Array(buffer),
 view2 = new Int8Array(buffer, 5, 2);

console.log(view1.buffer === buffer); // true
console.log(view2.buffer === buffer); // true
console.log(view1.byteOffset); // 0
console.log(view2.byteOffset); // 5

Improved Array Capabilities 205

console.log(view1.byteLength); // 10
console.log(view2.byteLength); // 2

In this code, the two views are Int8Array instances that use buffer. Both
view1 and view2 have the same buffer, byteOffset, and byteLength properties
that exist on DataView instances. It’s easy to switch to using a typed array
wherever you use a DataView as long as you only work with one numeric type.

The second way to create a typed array is to pass a single number to the
constructor. That number represents the number of elements (not bytes) to
allocate to the array. The constructor will create a new buffer with the cor-
rect number of bytes to represent that number of array elements, and you
can access the number of elements in the array by using the length property.
Here’s an example:

let ints = new Int16Array(2),
 floats = new Float32Array(5);

console.log(ints.byteLength); // 4
console.log(ints.length); // 2

console.log(floats.byteLength); // 20
console.log(floats.length); // 5

The ints array is created with space for two elements. Each 16-bit integer
requires two bytes per value, so the array is allocated four bytes. The floats
array is created to hold five elements, so the number of bytes required is 20
(four bytes per element). In both cases, a new buffer is created and can be
accessed using the buffer property if necessary.

N o t e If no argument is passed to a typed array constructor, the constructor acts as if 0 was
passed. This creates a typed array that cannot hold data because zero bytes are allo-
cated to the buffer.

The third way to create a typed array is to pass an object as the only
argument to the constructor. The object can be any of the following:

A typed array Each element is copied into a new element on the new
typed array. For example, if you pass an int8 to the Int16Array construc-
tor, the int8 values would be copied into an int16 array. The new typed
array has a different array buffer than the one that was passed in.

An iterable The object’s iterator is called to retrieve the items to
insert into the typed array. The constructor will throw an error if any
elements are invalid for the view type.

An array The elements of the array are copied into a new typed array.
The constructor will throw an error if any elements are invalid for
the type.

An array-like object The object behaves the same as an array.

206 Chapter 10

In each of these cases, a new typed array is created with the data from
the source object. This can be especially useful when you want to initialize
a typed array with some values, like this:

let ints1 = new Int16Array([25, 50]),
 ints2 = new Int32Array(ints1);

console.log(ints1.buffer === ints2.buffer); // false

console.log(ints1.byteLength); // 4
console.log(ints1.length); // 2
console.log(ints1[0]); // 25
console.log(ints1[1]); // 50

console.log(ints2.byteLength); // 8
console.log(ints2.length); // 2
console.log(ints2[0]); // 25
console.log(ints2[1]); // 50

This example creates an Int16Array and initializes it with an array of two
values. Then, an Int32Array is created and passed the Int16Array. The values
25 and 50 are copied from ints1 into ints2 because the two typed arrays
have completely separate buffers. The same numbers are represented in
both typed arrays, but ints2 has eight bytes to represent the data and ints1
has only four.

e l e me N t sI z e

Each typed array is made up of a number of elements, and the element size
is the number of bytes each element represents. This value is stored on a
BYTES_PER_ELEMENT property on each constructor and each instance, so you
can easily query the element size:

console.log(UInt8Array.BYTES_PER_ELEMENT); // 1
console.log(UInt16Array.BYTES_PER_ELEMENT); // 2

let ints = new Int8Array(5);
console.log(ints.BYTES_PER_ELEMENT); // 1

As this code shows, you can check BYTES_PER_ELEMENT on the different
typed array classes, and you can also check it on instances of those classes.

Improved Array Capabilities 207

Similarities Between Typed and Regular Arrays
Typed arrays and regular arrays are similar in several ways, and as you’ve
seen in this chapter, you can use typed arrays like regular arrays in many
situations. For instance, you can check how many elements are in a typed
array using the length property, and you can access a typed array’s elements
directly using numeric indexes. For example:

let ints = new Int16Array([25, 50]);

console.log(ints.length); // 2
console.log(ints[0]); // 25
console.log(ints[1]); // 50

ints[0] = 1;
ints[1] = 2;

console.log(ints[0]); // 1
console.log(ints[1]); // 2

In this code, a new Int16Array with two items is created. The items are
read from and written to using their numeric indexes, and those values are
automatically stored and converted into int16 values as part of the opera-
tion. But the similarities don’t end there.

N o t e Unlike regular arrays, you cannot change the size of a typed array using the length
property. The length property is not writable, so any attempt to change it is ignored
in non-strict mode and throws an error in strict mode.

Common Methods
Typed arrays also include many methods that are functionally equivalent to
regular array methods. You can use the following array methods on typed
arrays:

copyWithin() findIndex() lastIndexOf() slice()

entries() forEach() map() some()

fill() indexOf() reduce() sort()

filter() join() reduceRight() values()

find() keys() reverse()

Keep in mind that although these methods act like their counter-
parts on Array.prototype, they’re not exactly the same. The typed array

208 Chapter 10

methods have additional checks for numeric type safety and, when an
array is returned, it is a typed array instead of a regular array (due to
Symbol.species). Here’s a simple example to demonstrate the difference:

let ints = new Int16Array([25, 50]),
 mapped = ints.map(v => v * 2);

console.log(mapped.length); // 2
console.log(mapped[0]); // 50
console.log(mapped[1]); // 100

console.log(mapped instanceof Int16Array); // true

This code uses the map() method to create a new array based on the
values in ints. The mapping function doubles each value in the array and
returns a new Int16Array.

The Same Iterators
Typed arrays have the same three iterators as regular arrays, too. Those are
the entries() method, the keys() method, and the values() method. That
means you can use the spread operator and for-of loops with typed arrays
just like you would with regular arrays. For example:

let ints = new Int16Array([25, 50]),
 intsArray = [...ints];

console.log(intsArray instanceof Array); // true
console.log(intsArray[0]); // 25
console.log(intsArray[1]); // 50

This code creates a new array called intsArray containing the same data
as the typed array ints. As with other iterables, the spread operator makes
converting typed arrays into regular arrays easy.

The of() and from() Methods
Additionally, all typed arrays have static of() and from() methods that work
like the Array.of() and Array.from() methods. The difference is that the
methods on typed arrays return a typed array instead of a regular array.
Here are some examples that use these methods to create typed arrays:

let ints = Int16Array.of(25, 50),
 floats = Float32Array.from([1.5, 2.5]);

console.log(ints instanceof Int16Array); // true
console.log(floats instanceof Float32Array); // true

Improved Array Capabilities 209

console.log(ints.length); // 2
console.log(ints[0]); // 25
console.log(ints[1]); // 50

console.log(floats.length); // 2
console.log(floats[0]); // 1.5
console.log(floats[1]); // 2.5

The of() and from() methods in this example create an Int16Array and
a Float32Array, respectively. These methods ensure that typed arrays can be
created just as easily as regular arrays.

Differences Between Typed and Regular Arrays
The most importance difference between typed arrays and regular arrays is
that typed arrays are not regular arrays. Typed arrays don’t inherit from Array
and Array.isArray() returns false when passed a typed array. For example:

let ints = new Int16Array([25, 50]);

console.log(ints instanceof Array); // false
console.log(Array.isArray(ints)); // false

Because the ints variable is a typed array, it isn’t an instance of Array
and cannot be identified as an array. This distinction is important because
although typed arrays and regular arrays are similar, typed arrays behave
differently in many ways.

Behavioral Differences
Regular arrays can grow and shrink as you interact with them, but typed
arrays always remain the same size. You cannot assign a value to a non-
existent numeric index in a typed array like you can with regular arrays,
because typed arrays ignore the operation. Here’s an example:

let ints = new Int16Array([25, 50]);

console.log(ints.length); // 2
console.log(ints[0]); // 25
console.log(ints[1]); // 50

ints[2] = 5;

console.log(ints.length); // 2
console.log(ints[2]); // undefined

210 Chapter 10

Despite assigning 5 to the numeric index 2 in this example, the ints
array does not grow at all. The length remains the same, and the value is
thrown away.

Typed arrays also have checks to ensure that only valid data types are
used. Zero is used in place of any invalid values. For example:

let ints = new Int16Array(["hi"]);

console.log(ints.length); // 1
console.log(ints[0]); // 0

This code attempts to use the string value "hi" in an Int16Array. Of
course, strings are invalid data types in typed arrays, so the value is inserted
as 0 instead. The length of the array is still 1, and even though the ints[0] slot
exists, it just contains 0.

All methods that modify values in a typed array enforce the same
restriction. For example, if the function passed to map() returns an invalid
value for the type array, then 0 is used instead:

let ints = new Int16Array([25, 50]),
 mapped = ints.map(v => "hi");

console.log(mapped.length); // 2
console.log(mapped[0]); // 0
console.log(mapped[1]); // 0

console.log(mapped instanceof Int16Array); // true
console.log(mapped instanceof Array); // false

Because the string value "hi" isn’t a 16-bit integer, it’s replaced with 0
in the resulting array. Thanks to this error correction behavior, typed array
methods don’t have to throw errors when invalid data is present, because
invalid data will never be in the array.

Missing Methods
Although typed arrays do have many of the same methods as regular arrays,
they also lack several array methods. The following methods are not avail-
able on typed arrays:

concat() shift()

pop() splice()

push() unshift()

Except for the concat() method, the methods in this list can change the
size of an array. Typed arrays can’t change size, which is why these methods
aren’t available for typed arrays. The concat() method isn’t available because

Improved Array Capabilities 211

the result of concatenating two typed arrays (especially if they deal with dif-
ferent data types) would be uncertain, and that would contradict the reason
for using typed arrays in the first place.

Additional Methods
Finally, typed array methods have two methods not present on regular
arrays: the set() and subarray() methods. These two methods are opposites
in that set() copies another array into an existing typed array, whereas
subarray() extracts part of an existing typed array into a new typed array.

The set() method accepts an array (either typed or regular) and an
optional offset at which to insert the data; if you pass nothing, the offset
defaults to zero. The data from the array argument is copied into the desti-
nation typed array while ensuring only valid data types are used. Here’s an
example:

let ints = new Int16Array(4);

ints.set([25, 50]);
ints.set([75, 100], 2);

console.log(ints.toString()); // 25,50,75,100

This code creates an Int16Array with four elements. The first call to
set() copies two values to the first and second elements in the array. The
second call to set() uses an offset of 2 to indicate that the values should be
placed in the array starting at the third element.

The subarray() method accepts an optional start and end index (the end
index is exclusive, as in the slice() method) and returns a new typed array.
You can also omit both arguments to create a clone of the typed array. For
example:

let ints = new Int16Array([25, 50, 75, 100]),
 subints1 = ints.subarray(),
 subints2 = ints.subarray(2),
 subints3 = ints.subarray(1, 3);

console.log(subints1.toString()); // 25,50,75,100
console.log(subints2.toString()); // 75,100
console.log(subints3.toString()); // 50,75

Three typed arrays are created from the original ints array in this
example. The subints1 array is a clone of ints that contains the same infor-
mation. Because the subints2 array copies data starting from index 2, it only
contains the last two elements of the ints array (75 and 100). The subints3
array contains only the middle two elements of the ints array, because
subarray() was called with a start and an end index.

212 Chapter 10

Summary
ECMAScript 6 continues the work of ECMAScript 5 by making arrays more
useful. New features include two more ways to create arrays: the Array.of()
and Array.from() methods. The Array.from() method can also convert iter-
ables and array-like objects into arrays. Both methods are inherited by
derived array classes and use the Symbol.species property to determine
what type of value should be returned (other inherited methods also use
Symbol.species when returning an array).

Also, several new methods on arrays were introduced. The fill() and
copyWithin() methods allow you to alter array elements in place. The find()
and findIndex() methods are useful for finding the first element in an array
that matches some criteria. The former returns the first element that fits
the criteria, and the latter returns the element’s index.

Typed arrays are not technically arrays, because they don’t inherit from
Array, but they do look and behave a lot like arrays. Typed arrays contain
one of eight different numeric data types and are built upon ArrayBuffer
objects that represent the underlying bits of a number or series of numbers.
Typed arrays are a more efficient way of doing bitwise arithmetic because
the values are not converted back and forth between formats, as is the case
with the JavaScript number type.

11
P r o m i s e s a n d a s y n c h r o n o u s

P r o g r a m m i n g

One of the most powerful aspects of
JavaScript is how easily it handles asynchro-

nous programming. As a language created
for the web, JavaScript needed to be able to

respond to asynchronous user interactions, such as
clicks and key presses, from the beginning. Node.js
made asynchronous programming in JavaScript more popular by using
callbacks as an alternative to events. But as more programs started using
asynchronous programming, events and callbacks weren’t powerful enough
to support everything developers wanted to do. Promises are the solution to
this problem.

Promises are another option for asynchronous programming, and they
work like futures and deferreds do in other languages. Like events and call-
backs, a promise specifies some code to be executed later, but promises

214 Chapter 11

also explicitly indicate whether the code succeeded or failed. You can chain
promises together based on success or failure in ways that make your code
easier to understand and debug.

This chapter shows you how promises work. However, for a complete
understanding, it’s important to understand some of the basic concepts
upon which promises are built.

Asynchronous Programming Background
JavaScript engines are built on the concept of a single-threaded event loop.
Single-threaded means that only one piece of code is executed at a time.
Contrast this with languages like Java or C++, where threads can allow mul-
tiple different pieces of code to execute at the same time. Maintaining and
protecting state when multiple pieces of code can access and change that
state is a difficult problem and a frequent source of bugs in thread-based
software.

JavaScript engines can execute only one piece of code at a time, so they
need to keep track of code that is meant to run. That code is kept in a job
queue. Whenever a piece of code is ready to be executed, it is added to the
job queue. When the JavaScript engine is finished executing code, the event
loop executes the next job in the queue. The event loop is a process inside
the JavaScript engine that monitors code execution and manages the job
queue. Keep in mind that as a queue, job execution runs from the first job
in the queue to the last.

The Event Model
When a user clicks a button or presses a key on the keyboard, an event like
onclick is triggered. That event might respond to the interaction by adding
a new job to the back of the job queue. This is JavaScript’s most basic form
of asynchronous programming. The event handler code doesn’t execute
until the event fires, and when it does execute, it has the appropriate con-
text. For example:

let button = document.getElementById("my-btn");
button.onclick = function(event) {
 console.log("Clicked");
};

In this code, console.log("Clicked") will not be executed until button is
clicked. When button is clicked, the function assigned to onclick is added to
the back of the job queue and will be executed when all other jobs ahead of
it are complete.

Events work well for simple interactions, but chaining multiple sepa-
rate asynchronous calls together is more complicated because you must
keep track of the event target (button in this example) for each event.
Additionally, you need to ensure that all appropriate event handlers are

Promises and Asynchronous Programming 215

added before the first time an event occurs. For instance, if button is clicked
before onclick is assigned, nothing will happen. So although events are use-
ful for responding to user interactions and similar infrequent functionality,
they aren’t very flexible for more complex needs.

The Callback Pattern
Node.js advanced the asynchronous programming model by popularizing
callbacks. The callback pattern is similar to the event model because the
asynchronous code doesn’t execute until a later point in time. It’s different
because the function to call is passed in as an argument, as shown here:

readFile("example.txt", function(err, contents) {
 if (err) {
 throw err;
 }

 console.log(contents);
});

console.log("Hi!");

This example uses the traditional Node.js error-first callback style. The
readFile() function is intended to read from a file on disk (specified as the
first argument) and then execute the callback (the second argument) when
complete. If there’s an error, the err argument of the callback is an error
object; otherwise, the contents argument contains the file contents as a
string.

Using the callback pattern, readFile() begins executing immediately and
pauses when it starts reading from the disk. That means console.log("Hi!")
is output immediately after readFile() is called, before console.log(contents)
prints anything. When readFile() finishes, it adds a new job to the end of the
job queue with the callback function and its arguments. That job executes
upon completion of all other jobs ahead of it.

The callback pattern is more flexible than events because chaining
multiple calls together is easier with callbacks. Here’s an example:

readFile("example.txt", function(err, contents) {
 if (err) {
 throw err;
 }

 writeFile("example.txt", function(err) {
 if (err) {
 throw err;
 }

 console.log("File was written!");
 });
});

216 Chapter 11

In this code, a successful call to readFile() results in another asynchro-
nous call, this time to the writeFile() function. Note that the same basic
pattern of checking err is present in both functions. When readFile() is com-
plete, it adds a job to the job queue that calls the writeFile() function if there
are no errors. Then, writeFile() adds a job to the job queue when it finishes.

This pattern works fairly well, but you can quickly find yourself in
callback hell. Callback hell occurs when you nest too many callbacks,
like this:

method1(function(err, result) {

 if (err) {
 throw err;
 }

 method2(function(err, result) {

 if (err) {
 throw err;
 }

 method3(function(err, result) {

 if (err) {
 throw err;
 }

 method4(function(err, result) {

 if (err) {
 throw err;
 }

 method5(result);
 });

 });

 });

});

Nesting multiple method calls, as this example does, creates a tangled
web of code that is difficult to understand and debug. Callbacks also pres-
ent problems when you want to implement more complex functionality.
What if you want two asynchronous operations to run in parallel and notify
you when they’re both complete? What if you want to start two asynchro-
nous operations at the same time but only take the result of the first one
to complete? In these cases, you’d need to track multiple callbacks and
cleanup operations, and promises greatly improve such situations.

Promises and Asynchronous Programming 217

Promise Basics
A promise is a placeholder for the result of an asynchronous operation.
Instead of subscribing to an event or passing a callback to a function, the
function can return a promise, as shown here:

// readFile promises to complete at some point in the future
let promise = readFile("example.txt");

In this code, readFile() doesn’t start reading the file immediately: that
will happen later. Instead, the function returns a promise object represent-
ing the asynchronous read operation so you can work with it in the future.
Exactly when you’ll be able to work with that result depends entirely on how
the promise’s life cycle concludes.

The Promise Life Cycle
Each promise goes through a short life cycle starting in the pending state,
which indicates that the asynchronous operation hasn’t completed yet.
A pending promise is considered unsettled. The promise in the previous
example is in the pending state as soon as the readFile() function returns
it. Once the asynchronous operation completes, the promise is considered
settled and enters one of two possible states:

Fulfilled The promise’s asynchronous operation has completed
successfully.

Rejected The promise’s asynchronous operation didn’t complete
successfully due to either an error or some other cause.

An internal [[PromiseState]] property is set to "pending", "fulfilled",
or "rejected" to reflect the promise’s state. This property isn’t exposed on
promise objects, so you can’t determine which state the promise is in pro-
grammatically. But you can take a specific action when a promise changes
state by using the then() method.

The then() method is present on all promises and takes two arguments.
The first argument is a function to call when the promise is fulfilled. Any
additional data related to the asynchronous operation is passed to this
fulfillment function. The second argument is a function to call when the
promise is rejected. Similar to the fulfillment function, the rejection func-
tion is passed any additional data related to the rejection.

n o t e Any object that implements the then() method as described in the preceding para-
graph is called a thenable. All promises are thenables, but all thenables are not
promises.

218 Chapter 11

Both arguments to then() are optional, so you can listen for any combina-
tion of fulfillment and rejection. For example, consider this set of then() calls:

let promise = readFile("example.txt");

promise.then(function(contents) {
 // fulfillment
 console.log(contents);
}, function(err) {
 // rejection
 console.error(err.message);
});

promise.then(function(contents) {
 // fulfillment
 console.log(contents);
});

promise.then(null, function(err) {
 // rejection
 console.error(err.message);
});

All three then() calls operate on the same promise. The first call listens for
fulfillment and rejection. The second only listens for fulfillment; errors won’t
be reported. The third just listens for rejection and doesn’t report success.

Promises also have a catch() method that behaves the same as then()
when only a rejection handler is passed. For example, the following catch()
and then() calls are functionally equivalent:

promise.catch(function(err) {
 // rejection
 console.error(err.message);
});

// is the same as:

promise.then(null, function(err) {
 // rejection
 console.error(err.message);
});

The then() and catch() methods are intended to be used in combination
to properly handle the result of asynchronous operations. This system is
better than using events and callbacks because it clearly indicates whether
the operation succeeded or failed completely. (Events tend not to fire when
there’s an error, and in callbacks you must always remember to check the
error argument.) Just know that if you don’t attach a rejection handler to a
promise, all failures will happen silently. Always attach a rejection handler,
even if the handler just logs the failure.

Promises and Asynchronous Programming 219

A fulfillment or rejection handler will still be executed even if it is
added to the job queue after the promise is already settled. This allows you
to add new fulfillment and rejection handlers at any time and guarantee
that they will be called. For example:

let promise = readFile("example.txt");

// original fulfillment handler
promise.then(function(contents) {
 console.log(contents);

 // now add another
 promise.then(function(contents) {
 console.log(contents);
 });
});

In this code, the fulfillment handler adds another fulfillment handler
to the same promise. The promise is already fulfilled at this point, so the
new fulfillment handler is added to the job queue and called when all other
preceding jobs on the queue are complete. Rejection handlers work the
same way.

n o t e Each call to then() or catch() creates a new job to be executed when the promise is
resolved. But these jobs end up in a separate job queue that is reserved strictly for
promises. The precise details of this second job queue aren’t important for under-
standing how to use promises as long as you understand how job queues work in
general.

Creating Unsettled Promises
New promises are created using the Promise constructor. This constructor
accepts a single argument: a function called the executor, which contains the
code to initialize the promise. The executor is passed two functions named
resolve() and reject() as arguments. The resolve() function is called when
the executor has finished successfully to signal that the promise is ready to
be resolved, whereas the reject() function indicates that the executor has
failed.

Here’s an example that uses a promise in Node.js to implement the
readFile() function you saw earlier in this chapter:

// Node.js example

let fs = require("fs");

function readFile(filename) {
 return new Promise(function(resolve, reject) {

220 Chapter 11

 // trigger the asynchronous operation
 fs.readFile(filename, { encoding: "utf8" }, function(err, contents) {

 // check for errors
 if (err) {
 reject(err);
 return;
 }

 // the read succeeded
 resolve(contents);

 });
 });
}

let promise = readFile("example.txt");

// listen for both fulfillment and rejection
promise.then(function(contents) {
 // fulfillment
 console.log(contents);
}, function(err) {
 // rejection
 console.error(err.message);
});

In this example, the native Node.js fs.readFile() asynchronous call is
wrapped in a promise. The executor either passes the error object to the
reject() function or passes the file contents to the resolve() function.

Keep in mind that the executor runs immediately when readFile() is
called. When either resolve() or reject() is called inside the executor, a job
is added to the job queue to resolve the promise. This is called job sched-
uling, and if you’ve ever used the setTimeout() or setInterval() functions,
you’re already familiar with it. In job scheduling, you add a new job to the
job queue to say, “Don’t execute this right now, but execute it later.” For
instance, the setTimeout() function lets you specify a delay before a job is
added to the queue:

// add this function to the job queue after 500 ms have passed
setTimeout(function() {
 console.log("Timeout");
}, 500)

console.log("Hi!");

This code schedules a job to be added to the job queue after 500 ms.
The two console.log() calls produce the following output:

Hi!
Timeout

Promises and Asynchronous Programming 221

Thanks to the 500 ms delay, the output that the function passed to
setTimeout() was shown after the output from the console.log("Hi!") call.

Promises work similarly. The promise executor executes immediately,
before anything that appears after it in the source code. For instance:

let promise = new Promise(function(resolve, reject) {
 console.log("Promise");
 resolve();
});

console.log("Hi!");

The output for this code is:

Promise
Hi!

Calling resolve() triggers an asynchronous operation. Functions passed
to then() and catch() are executed asynchronously, because these are also
added to the job queue. Here’s an example:

let promise = new Promise(function(resolve, reject) {
 console.log("Promise");
 resolve();
});

promise.then(function() {
 console.log("Resolved.");
});

console.log("Hi!");

The output for this example is:

Promise
Hi!
Resolved

Note that even though the call to then() appears before the line
console.log("Hi!"), it doesn’t actually execute until later (unlike the exe-
cutor). The reason is that fulfillment and rejection handlers are always
added to the end of the job queue after the executor has completed.

Creating Settled Promises
The Promise constructor is the best way to create unsettled promises due
to the dynamic nature of what the promise executor does. But if you want
a promise to represent just a single known value, it doesn’t make sense to
schedule a job that simply passes a value to the resolve() function. Instead,
you can use either of two methods that create settled promises given a
specific value.

222 Chapter 11

Using Promise.resolve()

The Promise.resolve() method accepts a single argument and returns a
promise in the fulfilled state. That means no job scheduling occurs, and
you need to add one or more fulfillment handlers to the promise to retrieve
the value. For example:

let promise = Promise.resolve(42);

promise.then(function(value) {
 console.log(value); // 42
});

This code creates a fulfilled promise so the fulfillment handler receives
42 as value. If a rejection handler were added to this promise, the rejection
handler would never be called because the promise will never be in the
rejected state.

Using Promise.reject()

You can also create rejected promises by using the Promise.reject() method.
This works like Promise.resolve() except the created promise is in the rejected
state, as follows:

let promise = Promise.reject(42);

promise.catch(function(value) {
 console.log(value); // 42
});

Any additional rejection handlers added to this promise would be
called but not fulfillment handlers.

n o t e If you pass a promise to either the Promise.resolve() or Promise.reject() method, the
promise is returned without modification.

Non-Promise Thenables

Both Promise.resolve() and Promise.reject() also accept non-promise then-
ables as arguments. When passed a non-promise thenable, these methods
create a new promise that is called after the then() function.

A non-promise thenable is created when an object has a then() method
that accepts a resolve and a reject argument, like this:

let thenable = {
 then: function(resolve, reject) {
 resolve(42);
 }
};

Promises and Asynchronous Programming 223

The thenable object in this example has no characteristics associated
with a promise other than the then() method. You can call Promise.resolve()
to convert thenable into a fulfilled promise:

let thenable = {
 then: function(resolve, reject) {
 resolve(42);
 }
};

let p1 = Promise.resolve(thenable);
p1.then(function(value) {
 console.log(value); // 42
});

In this example, Promise.resolve() calls thenable.then() so a promise
state can be determined. The promise state for thenable is fulfilled because
resolve(42) is called inside the then() method. A new promise called p1 is
created in the fulfilled state with the value passed from thenable (that is,
42), and the fulfillment handler for p1 receives 42 as the value.

You can use the same process with Promise.resolve() to create a rejected
promise from a thenable:

let thenable = {
 then: function(resolve, reject) {
 reject(42);
 }
};

let p1 = Promise.resolve(thenable);
p1.catch(function(value) {
 console.log(value); // 42
});

This example is similar to the previous example, except thenable is
rejected. When thenable.then() executes, a new promise is created in the
rejected state with a value of 42. That value is then passed to the rejection
handler for p1.

Promise.resolve() and Promise.reject() work like this to allow you to eas-
ily work with non-promise thenables. Many libraries used thenables prior
to promises being introduced in ECMAScript 6, so the ability to convert
thenables into formal promises is important for backward compatibility
with previously existing libraries. When you’re unsure whether an object is
a promise, passing the object through Promise.resolve() or Promise.reject()
(depending on your anticipated result) is the best way to find out because
promises just pass through unchanged.

224 Chapter 11

Executor Errors
If an error is thrown inside an executor, the promise’s rejection handler is
called. For example:

let promise = new Promise(function(resolve, reject) {
 throw new Error("Explosion!");
});

promise.catch(function(error) {
 console.log(error.message); // "Explosion!"
});

In this code, the executor intentionally throws an error. An implicit
try-catch is inside every executor so that the error is caught and then passed
to the rejection handler. The previous example is equivalent to this:

let promise = new Promise(function(resolve, reject) {
 try {
 throw new Error("Explosion!");
 } catch (ex) {
 reject(ex);
 }
});

promise.catch(function(error) {
 console.log(error.message); // "Explosion!"
});

The executor catches any thrown errors to simplify this common use
case, but an error thrown in the executor is only reported when a rejection
handler is present. Otherwise, the error is suppressed. This became a prob-
lem for developers early on when using promises, and JavaScript environ-
ments address it by providing hooks for catching rejected promises.

Global Promise Rejection Handling
One of the most controversial aspects of promises is the silent failure that
occurs when a promise is rejected without a rejection handler. Some con-
sider this the biggest flaw in the specification because it’s the only part of
the JavaScript language that doesn’t make errors apparent.

Determining whether a promise rejection was handled isn’t straight-
forward due to the nature of promises. For instance, consider this
example:

let rejected = Promise.reject(42);

// at this point, rejected is unhandled

Promises and Asynchronous Programming 225

// some time later...
rejected.catch(function(value) {
 // now rejected has been handled
 console.log(value);
});

You can call then() or catch() at any point and have them work correctly
regardless of whether the promise is settled or not, making it difficult to
know precisely when a promise will be handled. In this case, the promise is
rejected immediately but isn’t handled until later.

Although it’s possible that a future version of ECMAScript will address
this problem, both Node.js and browsers have implemented changes to
address this developer pain point. They aren’t part of the ECMAScript 6
specification but are valuable tools when you’re using promises.

Node.js Rejection Handling
Node.js emits two events on the process object that are related to promise
rejection handling:

unhandledRejection Emitted when a promise is rejected and no rejec-
tion handler is called within one turn of the event loop

rejectionHandled Emitted when a promise is rejected and a rejection
handler is called after one turn of the event loop

These events are designed to work together to help identify promises
that are rejected and not handled.

The unhandledRejection event handler is passed the rejection reason
(frequently an error object) and the promise that was rejected as argu-
ments. The following code shows unhandledRejection in action:

let rejected;

process.on("unhandledRejection", function(reason, promise) {
 console.log(reason.message); // "Explosion!"
 console.log(rejected === promise); // true
});

rejected = Promise.reject(new Error("Explosion!"));

This example creates a rejected promise with an error object and listens
for the unhandledRejection event. The event handler receives the error object
as the first argument and the promise as the second.

The rejectionHandled event handler has only one argument, which is the
promise that was rejected. For example:

let rejected;

process.on("rejectionHandled", function(promise) {
 console.log(rejected === promise); // true
});

226 Chapter 11

rejected = Promise.reject(new Error("Explosion!"));

// wait to add the rejection handler
setTimeout(function() {
 rejected.catch(function(value) {
 console.log(value.message); // "Explosion!"
 });
}, 1000);

Here, the rejectionHandled event is emitted when the rejection handler
is finally called. If the rejection handler were attached directly to rejected
after rejected is created, the event wouldn’t be emitted. The rejection
handler would instead be called during the same turn of the event loop
where rejected was created, which isn’t useful.

To properly track potentially unhandled rejections, use the events
rejectionHandled and unhandledRejection to store a list of potentially unhandled
rejections. Then wait some period of time to inspect the list. For example,
look at this simple unhandled rejection tracker:

let possiblyUnhandledRejections = new Map();

// when a rejection is unhandled, add it to the map
process.on("unhandledRejection", function(reason, promise) {
 possiblyUnhandledRejections.set(promise, reason);
});

process.on("rejectionHandled", function(promise) {
 possiblyUnhandledRejections.delete(promise);
});

setInterval(function() {

 possiblyUnhandledRejections.forEach(function(reason, promise) {
 console.log(reason.message ? reason.message : reason);

 // do something to handle these rejections
 handleRejection(promise, reason);
 });

 possiblyUnhandledRejections.clear();

}, 60000);

This code uses a map to store promises and their rejection reasons.
Each promise is a key, and the promise’s reason is the associated value.
Each time unhandledRejection is emitted, the promise and its rejection reason
are added to the map. Each time rejectionHandled is emitted, the handled
promise is removed from the map. As a result, possiblyUnhandledRejections
grows and shrinks as events are called. The setInterval() call periodically
checks the list of possible unhandled rejections and outputs the informa-
tion to the console (in reality, you’ll probably want to do something else

Promises and Asynchronous Programming 227

to log or otherwise handle the rejection). A map is used in this example
instead of a weak map because you need to inspect the map periodically to
see which promises are present, and that’s not possible with a weak map.

Although this example is specific to Node.js, browsers have implemented
a similar mechanism for notifying developers about unhandled rejections.

Browser Rejection Handling
Browsers also emit two events to help identify unhandled rejections. These
events are emitted by the window object and are effectively the same as their
Node.js equivalents:

unhandledrejection Emitted when a promise is rejected and no rejec-
tion handler is called within one turn of the event loop

rejectionhandled Emitted when a promise is rejected and a rejection
handler is called after one turn of the event loop

Although the Node.js implementation passes individual parameters to
the event handler, the event handler for these browser events receives an
event object with the following properties:

type The name of the event ("unhandledrejection" or "rejectionhandled")

promise The promise object that was rejected

reason The rejection value from the promise

The other difference in the browser implementation is that the rejec-
tion value (reason) is available for both events. For example:

let rejected;

window.onunhandledrejection = function(event) {
 console.log(event.type); // "unhandledrejection"
 console.log(event.reason.message); // "Explosion!"
 console.log(rejected === event.promise); // true
});

window.onrejectionhandled = function(event) {
 console.log(event.type); // "rejectionhandled"
 console.log(event.reason.message); // "Explosion!"
 console.log(rejected === event.promise); // true
});

rejected = Promise.reject(new Error("Explosion!"));

This code assigns both event handlers using the DOM Level 0
notation of onunhandledrejection and onrejectionhandled. (You can also use
addEventListener("unhandledrejection") and addEventListener("rejectionhandled")
if you prefer.) Each event handler receives an event object containing infor-
mation about the rejected promise. The type, promise, and reason properties
are all available in both event handlers.

228 Chapter 11

The code to keep track of unhandled rejections in the browser is very
similar to the code for Node.js, too:

let possiblyUnhandledRejections = new Map();

// when a rejection is unhandled, add it to the map
window.onunhandledrejection = function(event) {
 possiblyUnhandledRejections.set(event.promise, event.reason);
};

window.onrejectionhandled = function(event) {
 possiblyUnhandledRejections.delete(event.promise);
};

setInterval(function() {

 possiblyUnhandledRejections.forEach(function(reason, promise) {
 console.log(reason.message ? reason.message : reason);

 // do something to handle these rejections
 handleRejection(promise, reason);
 });

 possiblyUnhandledRejections.clear();

}, 60000);

This implementation is almost exactly the same as the Node.js imple-
mentation. It uses the same approach of storing promises and their rejection
values in a map and then inspecting them later. The only real difference is
where the information is retrieved from in the event handlers.

Handling promise rejections can be tricky, but you’ve just begun to
see how powerful promises can really be. It’s time to take the next step and
chain several promises together.

Chaining Promises
At this point, promises may seem like little more than an incremental
improvement over using some combination of a callback and the setTimeout()
function, but there is much more to promises than meets the eye. Specifically,
a number of ways are available to chain promises together to accomplish
more complex asynchronous behavior.

Each call to then() or catch() actually creates and returns another prom-
ise. This second promise is resolved only when the first has been fulfilled or
rejected. Consider this example:

let p1 = new Promise(function(resolve, reject) {
 resolve(42);
});

Promises and Asynchronous Programming 229

p1.then(function(value) {
 console.log(value);
}).then(function() {
 console.log("Finished");
});

This code outputs the following:

42
Finished

The call to p1.then() returns a second promise on which then() is called.
The second then() fulfillment handler is only called after the first promise
has been resolved. If you unchain this example, it looks like this:

let p1 = new Promise(function(resolve, reject) {
 resolve(42);
});

let p2 = p1.then(function(value) {
 console.log(value);
})

p2.then(function() {
 console.log("Finished");
});

In this unchained version of the code, the result of p1.then() is stored in
p2, and then p2.then() is called to add the final fulfillment handler. As you
might have guessed, the call to p2.then() also returns a promise, but this
example just doesn’t use that promise.

Catching Errors
Promise chaining allows you to catch errors that may occur in a fulfillment
or rejection handler from a previous promise. For example:

let p1 = new Promise(function(resolve, reject) {
 resolve(42);
});

p1.then(function(value) {
 throw new Error("Boom!");
}).catch(function(error) {
 console.log(error.message); // "Boom!"
});

In this code, the fulfillment handler for p1 throws an error. The
chained call to the catch() method, which is on a second promise, is able

230 Chapter 11

to receive that error through its rejection handler. The same is true if a
rejection handler throws an error:

let p1 = new Promise(function(resolve, reject) {
 throw new Error("Explosion!");
});

p1.catch(function(error) {
 console.log(error.message); // "Explosion!"
 throw new Error("Boom!");
}).catch(function(error) {
 console.log(error.message); // "Boom!"
});

Here, the executor throws an error and triggers the p1 promise’s rejec-
tion handler. That handler then throws another error that is caught by the
second promise’s rejection handler. The chained promise calls are aware of
errors in other promises in the chain.

n o t e Always have a rejection handler at the end of a promise chain to ensure that you can
properly handle any errors that may occur.

Returning Values in Promise Chains
Another important aspect of promise chains is the ability to pass data from
one promise to the next. I’ve shown how a value passed to the resolve()
handler inside an executor is passed to the fulfillment handler for that
promise, but you can continue passing data along a chain by specifying a
return value from the fulfillment handler. For example:

let p1 = new Promise(function(resolve, reject) {
 resolve(42);
});

p1.then(function(value) {
 console.log(value); // "42"
 return value + 1;
}).then(function(value) {
 console.log(value); // "43"
});

The fulfillment handler for p1 returns value + 1 when executed.
Because value is 42 (from the executor), the fulfillment handler returns
43. That value is then passed to the fulfillment handler of the second
promise, which outputs it to the console.

You could do the same thing with the rejection handler. When a rejec-
tion handler is called, it may return a value. If it does, that value is used to
fulfill the next promise in the chain, as in the next example.

Promises and Asynchronous Programming 231

let p1 = new Promise(function(resolve, reject) {
 reject(42);
});

p1.catch(function(value) {
 // first fulfillment handler
 console.log(value); // "42"
 return value + 1;
}).then(function(value) {
 // second fulfillment handler
 console.log(value); // "43"
});

Here, the executor calls reject() with 42. That value is passed into the
rejection handler for the promise, where value + 1 is returned. Even though
this return value is coming from a rejection handler, it is still used in the
fulfillment handler of the next promise in the chain. The failure of one
promise can allow the recovery of the entire chain if necessary.

Returning Promises in Promise Chains
Returning primitive values from fulfillment and rejection handlers allows
for the passing of data between promises, but what if you return an object?
If the object is a promise, there’s an extra step that’s taken to determine
how to proceed. Consider the following example:

let p1 = new Promise(function(resolve, reject) {
 resolve(42);
});

let p2 = new Promise(function(resolve, reject) {
 resolve(43);
});

p1.then(function(value) {
 // first fulfillment handler
 console.log(value); // 42
 return p2;
}).then(function(value) {
 // second fulfillment handler
 console.log(value); // 43
});

In this code, p1 schedules a job that resolves to 42. The fulfillment
handler for p1 returns p2, a promise already in the resolved state. The sec-
ond fulfillment handler is called because p2 has been fulfilled. If p2 were
rejected, a rejection handler (if present) would be called instead of the
second fulfillment handler.

232 Chapter 11

The important thing to recognize about this pattern is that the second
fulfillment handler is not added to p2 but rather to a third promise. The
second fulfillment handler is therefore attached to that third promise, mak-
ing the previous example equivalent to this:

let p1 = new Promise(function(resolve, reject) {
 resolve(42);
});

let p2 = new Promise(function(resolve, reject) {
 resolve(43);
});

let p3 = p1.then(function(value) {
 // first fulfillment handler
 console.log(value); // 42
 return p2;
});

p3.then(function(value) {
 // second fulfillment handler
 console.log(value); // 43
});

Here, it’s clear that the second fulfillment handler is attached to p3
rather than p2. This is a subtle but important distinction, because the sec-
ond fulfillment handler will not be called if p2 is rejected. For instance:

let p1 = new Promise(function(resolve, reject) {
 resolve(42);
});

let p2 = new Promise(function(resolve, reject) {
 reject(43);
});

p1.then(function(value) {
 // first fulfillment handler
 console.log(value); // 42
 return p2;
}).then(function(value) {
 // second fulfillment handler
 console.log(value); // never called
});

In this example, the second fulfillment handler is never called because
p2 is rejected. However, you could attach a rejection handler instead:

let p1 = new Promise(function(resolve, reject) {
 resolve(42);
});

Promises and Asynchronous Programming 233

let p2 = new Promise(function(resolve, reject) {
 reject(43);
});

p1.then(function(value) {
 // first fulfillment handler
 console.log(value); // 42
 return p2;
}).catch(function(value) {
 // rejection handler
 console.log(value); // 43
});

Now the rejection handler is called as a result of p2 being rejected. The
rejected value 43 from p2 is passed into that rejection handler.

Returning thenables from fulfillment or rejection handlers doesn’t
change when the promise executors are executed. The first defined promise
will run its executor first, then the second promise executor will run, and so
on. Returning thenables simply allows you to define additional responses to
the promise results. You defer the execution of fulfillment handlers by creat-
ing a new promise within a fulfillment handler. For example:

let p1 = new Promise(function(resolve, reject) {
 resolve(42);
});

p1.then(function(value) {
 console.log(value); // 42

 // create a new promise
 let p2 = new Promise(function(resolve, reject) {
 resolve(43);
 });

 return p2
}).then(function(value) {
 console.log(value); // 43
});

In this example, a new promise is created within the fulfillment handler
for p1. That means the second fulfillment handler won’t execute until after
p2 is fulfilled. This pattern is useful when you want to wait until a previous
promise has been settled before triggering another promise.

Responding to Multiple Promises
Each example in this chapter so far has dealt with responding to one
promise at a time. But sometimes you’ll want to monitor the progress
of multiple promises to determine the next action. ECMAScript 6 pro-
vides two methods that monitor multiple promises: Promise.all() and
Promise.race().

234 Chapter 11

The Promise.all() Method
The Promise.all() method accepts a single argument, which is an iterable
(such as an array) of promises to monitor, and returns a promise that is
resolved only when every promise in the iterable is resolved. The returned
promise is fulfilled when every promise in the iterable is fulfilled, as in this
example:

let p1 = new Promise(function(resolve, reject) {
 resolve(42);
});

let p2 = new Promise(function(resolve, reject) {
 resolve(43);
});

let p3 = new Promise(function(resolve, reject) {
 resolve(44);
});

let p4 = Promise.all([p1, p2, p3]);

p4.then(function(value) {
 console.log(Array.isArray(value)); // true
 console.log(value[0]); // 42
 console.log(value[1]); // 43
 console.log(value[2]); // 44
});

Each promise here resolves with a number. The call to Promise.all()
creates promise p4, which is ultimately fulfilled when promises p1, p2, and p3
are fulfilled. The result passed to the fulfillment handler for p4 is an array
containing each resolved value: 42, 43, and 44. The values are stored in the
order in which the promises resolved, so you can match promise results to
the promises that resolved to them.

If any promise passed to Promise.all() is rejected, the returned promise
is immediately rejected without waiting for the other promises to complete:

let p1 = new Promise(function(resolve, reject) {
 resolve(42);
});

let p2 = new Promise(function(resolve, reject) {
 reject(43);
});

let p3 = new Promise(function(resolve, reject) {
 resolve(44);
});

let p4 = Promise.all([p1, p2, p3]);

Promises and Asynchronous Programming 235

p4.catch(function(value) {
 console.log(Array.isArray(value)) // false
 console.log(value); // 43
});

In this example, p2 is rejected with a value of 43. The rejection handler
for p4 is called immediately without waiting for p1 or p3 to finish executing.
(They do finish executing; p4 just doesn’t wait.)

The rejection handler always receives a single value rather than an array,
and the value is the rejection value from the promise that was rejected. In
this case, the rejection handler is passed 43 to reflect the rejection from p2.

The Promise.race() Method
The Promise.race() method provides a slightly different take on monitor-
ing multiple promises. This method also accepts an iterable of promises
to monitor and returns a promise, but the returned promise is settled as
soon as the first promise is settled. Instead of waiting for all promises to be
fulfilled, like the Promise.all() method, the Promise.race() method returns
an appropriate promise as soon as any promise in the array is fulfilled. For
example:

let p1 = Promise.resolve(42);

let p2 = new Promise(function(resolve, reject) {
 resolve(43);
});

let p3 = new Promise(function(resolve, reject) {
 resolve(44);
});

let p4 = Promise.race([p1, p2, p3]);

p4.then(function(value) {
 console.log(value); // 42
});

In this code, p1 is created as a fulfilled promise while the others schedule
jobs. The fulfillment handler for p4 is then called with the value of 42 and
ignores the other promises. The promises passed to Promise.race() are truly
in a race to see which is settled first. If the first promise to settle is fulfilled,
the returned promise is fulfilled; if the first promise to settle is rejected, the
returned promise is rejected. Here’s an example with a rejection:

let p1 = new Promise(function(resolve, reject) {
 resolve(42);
});

let p2 = Promise.reject(43);

236 Chapter 11

let p3 = new Promise(function(resolve, reject) {
 resolve(44);
});

let p4 = Promise.race([p1, p2, p3]);

p4.catch(function(value) {
 console.log(value); // 43
});

Here, p4 is rejected because p2 is already in the rejected state when
Promise.race() is called. Even though p1 and p3 are fulfilled, those results
are ignored because they occur after p2 is rejected.

Inheriting from Promises
Just like other built-in types, you can use a promise as the base for a derived
class. This allows you to define your own variation of promises to extend what
built-in promises can do. For instance, suppose you want to create a promise
that can use methods named success() and failure() in addition to the usual
then() and catch() methods. You could create that promise type as follows:

class MyPromise extends Promise {

 // use default constructor

 success(resolve, reject) {
 return this.then(resolve, reject);
 }

 failure(reject) {
 return this.catch(reject);
 }

}

let promise = new MyPromise(function(resolve, reject) {
 resolve(42);
});

promise.success(function(value) {
 console.log(value); // 42
}).failure(function(value) {
 console.log(value);
});

In this example, MyPromise is derived from Promise and has two additional
methods. The success() method mimics resolve() and failure() mimics the
reject() method.

Each added method uses this to call the method it mimics. The derived
promise functions the same as a built-in promise except now you can call
success() and failure() if you want.

Promises and Asynchronous Programming 237

Because static methods are inherited, the MyPromise.resolve() method, the
MyPromise.reject() method, the MyPromise.race() method, and the MyPromise.all()
method are also present on derived promises. The last two methods behave
the same as the built-in methods, but the first two are slightly different.

Both MyPromise.resolve() and MyPromise.reject() will return an instance
of MyPromise regardless of the value passed because those methods use the
Symbol.species property (see page 185) to determine the type of promise
to return. If a built-in promise is passed to either method, the promise will
be resolved or rejected, and the method will return a new MyPromise so you
can assign fulfillment and rejection handlers. For example:

let p1 = new Promise(function(resolve, reject) {
 resolve(42);
});

let p2 = MyPromise.resolve(p1);
p2.success(function(value) {
 console.log(value); // 42
});

console.log(p2 instanceof MyPromise); // true

Here, p1 is a built-in promise that is passed to the MyPromise.resolve()
method. The result, p2, is an instance of MyPromise where the resolved value
from p1 is passed into the fulfillment handler.

If an instance of MyPromise is passed to the MyPromise.resolve() or
MyPromise.reject() methods, it will just be returned directly without being
resolved. In all other ways, these two methods behave like Promise.resolve()
and Promise.reject().

Promise-Based Asynchronous Task Running
In Chapter 8, I introduced generators and showed you how to use them for
asynchronous task running, like this:

let fs = require("fs");

function run(taskDef) {

 // create the iterator, make available elsewhere
 let task = taskDef();

 // start the task
 let result = task.next();

 // recursive function to keep calling next()
 function step() {

 // if there's more to do
 if (!result.done) {
 if (typeof result.value === "function") {

238 Chapter 11

 result.value(function(err, data) {
 if (err) {
 result = task.throw(err);
 return;
 }

 result = task.next(data);
 step();
 });
 } else {
 result = task.next(result.value);
 step();
 }

 }
 }

 // start the process
 step();

}

// define a function to use with the task runner

function readFile(filename) {
 return function(callback) {
 fs.readFile(filename, callback);
 };
}

// run a task

run(function*() {
 let contents = yield readFile("config.json");
 doSomethingWith(contents);
 console.log("Done");
});

This implementation results in some pain points. First, wrapping every
function in a function that returns a function is a bit confusing (even this
sentence is confusing). Second, there is no way to distinguish between
a function return value intended as a callback for the task runner and a
return value that isn’t a callback.

You can greatly simplify and generalize this process by ensuring that
each asynchronous operation returns a promise. Here’s one way you could
simplify that task runner by using promises as a common interface for all
asynchronous code:

let fs = require("fs");

function run(taskDef) {

Promises and Asynchronous Programming 239

 // create the iterator
 let task = taskDef();

 // start the task
 let result = task.next();

 // recursive function to iterate through
 (function step() {

 // if there's more to do
 if (!result.done) {

 // resolve to a promise to make it easy
 let promise = Promise.resolve(result.value);
 promise.then(function(value) {
 result = task.next(value);
 step();
 }).catch(function(error) {
 result = task.throw(error);
 step();
 });
 }
 }());
}

// define a function to use with the task runner

function readFile(filename) {
 return new Promise(function(resolve, reject) {
 fs.readFile(filename, function(err, contents) {
 if (err) {
 reject(err);
 } else {
 resolve(contents);
 }
 });
 });
}

// run a task

run(function*() {
 let contents = yield readFile("config.json");
 doSomethingWith(contents);
 console.log("Done");
});

In this version of the code, a generic run() function executes a genera-
tor to create an iterator. It calls task.next() to start the task and recursively
calls step() until the iterator is complete.

Inside the step() function, if there’s more work to do, then result.done is
false. At that point, result.value should be a promise, but Promise.resolve()
is called just in case the function in question didn’t return a promise.

240 Chapter 11

(Remember, Promise.resolve() just passes through any promise passed in
and wraps any non-promise in a promise.) Next, a fulfillment handler is
added that retrieves the promise value and passes the value back to the
iterator. Then, result is assigned to the next yield result before the step()
function calls itself.

A rejection handler stores any rejection results in an error object. The
task.throw() method passes that error object back into the iterator, and if an
error is caught in the task, result is assigned to the next yield result. Finally,
step() is called inside catch() to continue.

This run() function can run any generator that uses yield to achieve
asynchronous code without exposing promises (or callbacks) to the devel-
oper. In fact, because the return value of the function call is always con-
verted to a promise, the function can even return something other than a
promise. That means both synchronous and asynchronous methods work
correctly when called using yield, and you never have to check that the
return value is a promise.

The only concern is ensuring that asynchronous functions like
readFile() return a promise that correctly identifies its state. For Node.js
built-in methods, that means you’ll have to convert those methods to
return promises instead of using callbacks.

F u t ur e a sy nchronous ta sk running

Bringing a simpler syntax to asynchronous task running in JavaScript is under
way. For instance, an await syntax is in progress that would closely mirror the
promise-based example in the preceding section. The basic idea is to use a
function marked with async instead of a generator and use await instead of
yield when calling a function, such as:

(async function() {
 let contents = await readFile("config.json");
 doSomethingWith(contents);
 console.log("Done");
});

The async keyword before function indicates that the function is meant to
run in an asynchronous manner. The await keyword signals that the function
call to readFile("config.json") should return a promise, and if it doesn’t, the
response should be wrapped in a promise. Just like the implementation of run()
in the preceding section, await will throw an error if the promise is rejected and
otherwise return the value from the promise. The end result is that you can write
asynchronous code as if it were synchronous without the overhead of manag-
ing an iterator-based state machine.

The await syntax is expected to be finalized in ECMAScript 2017
(ECMAScript 8).

Promises and Asynchronous Programming 241

Summary
Promises are designed to improve asynchronous programming in JavaScript
by giving you more control and composability over asynchronous opera-
tions than events and callbacks can. Promises schedule jobs to be added
to the JavaScript engine’s job queue for future execution, and a second job
queue tracks promise fulfillment and rejection handlers to ensure proper
execution.

Promises have three states: pending, fulfilled, and rejected. A promise
starts in a pending state and becomes fulfilled on a successful execution or
rejected on a failure. In either case, you can add handlers to indicate when
a promise is settled. The then() method allows you to assign a fulfillment
and rejection handler, and the catch() method allows you to assign only a
rejection handler.

You can chain promises together in a variety of ways and pass informa-
tion between them. Each call to then() creates and returns a new promise
that is resolved when the previous one is resolved. Such chains can be used
to trigger responses to a series of asynchronous events. You can also use
Promise.race() and Promise.all() to monitor the progress of multiple prom-
ises and respond accordingly.

Asynchronous task running is easier when you combine generators and
promises, because promises provide a common interface that asynchronous
operations can return. You can then use generators and the yield operator
to wait for asynchronous responses and respond appropriately.

Most new web APIs are being built on top of promises, and you can
expect many more to follow suit in the future.

12
P r o x i e s a n d t h e

r e f l e c t i o n a P i

ECMAScript 5 and ECMAScript 6
were both developed with demystify-

ing JavaScript functionality in mind. For
example, JavaScript environments contained

nonenumerable and nonwritable object properties
prior to ECMAScript 5, but developers couldn’t define
their own nonenumerable or nonwritable properties. ECMAScript 5
included the Object.defineProperty() method, which allowed developers
to do what JavaScript engines could do already.

ECMAScript 6 gives developers further access to JavaScript engine
capabilities by adding built-in objects. To allow developers to create built-in
objects, the language exposes the inner workings of objects through proxies,
which are wrappers that can intercept and alter low-level JavaScript engine
operations. This chapter starts by describing the problem that proxies are
meant to address in detail, and then discusses how you can create and use
proxies effectively.

244 Chapter 12

The Array Problem
The JavaScript array object behaves in ways that developers couldn’t mimic
in their own objects prior to ECMAScript 6. An array’s length property is
affected when you assign values to specific array items, and you can modify
array items by modifying the length property. For example:

let colors = ["red", "green", "blue"];

console.log(colors.length); // 3

colors[3] = "black";

console.log(colors.length); // 4
console.log(colors[3]); // "black"

colors.length = 2;

console.log(colors.length); // 2
console.log(colors[3]); // undefined
console.log(colors[2]); // undefined
console.log(colors[1]); // "green"

The colors array starts with three items. Assigning "black" to colors[3]
automatically increments the length property to 4. Setting the length prop-
erty to 2 removes the last two items in the array, leaving only the first two
items. Nothing in ECMAScript 5 allows developers to achieve this behavior,
but proxies change that.

n o t e This nonstandard behavior of numeric properties and the length property is why
arrays are considered exotic objects in ECMAScript 6.

Introducing Proxies and Reflection
Calling new Proxy() creates a proxy to use in place of another object (called
the target). The proxy virtualizes the target so the proxy and the target appear
to be functionally the same.

Proxies allow you to intercept low-level object operations on the target
that are otherwise internal to the JavaScript engine. These low-level opera-
tions are intercepted using a trap, which is a function that responds to a
specific operation.

The reflection API, represented by the Reflect object, is a collection of
methods that provide the default behavior for the same low-level operations
that proxies can override. There is a Reflect method for every proxy trap.
Those methods have the same name and are passed the same arguments as
their respective proxy traps. Table 12-1 summarizes the proxy trap behavior.

Proxies and the Reflection API 245

Table 12-1: Proxy Traps in JavaScript

Proxy trap Overrides the behavior of Default behavior

get Reading a property value Reflect.get()

set Writing to a property Reflect.set()

has The in operator Reflect.has()

deleteProperty The delete operator Reflect.deleteProperty()

getPrototypeOf Object.getPrototypeOf() Reflect.getPrototypeOf()

setPrototypeOf Object.setPrototypeOf() Reflect.setPrototypeOf()

isExtensible Object.isExtensible() Reflect.isExtensible()

preventExtensions Object.preventExtensions() Reflect.preventExtensions()

getOwnPropertyDescriptor Object.getOwnPropertyDescriptor() Reflect.getOwnPropertyDescriptor()

defineProperty Object.defineProperty() Reflect.defineProperty

ownKeys Object.keys(),
Object.getOwnPropertyNames(), and
Object.getOwnPropertySymbols()

Reflect.ownKeys()

apply Calling a function Reflect.apply()

construct Calling a function with new Reflect.construct()

Each trap overrides some built-in behavior of JavaScript objects, allow-
ing you to intercept and modify the behavior. If you still need to use the
built-in behavior, you can use the corresponding reflection API method. The
relationship between proxies and the reflection API becomes clear when you
start creating proxies, so it’s best to dive in and look at some examples.

n o t e The original ECMAScript 6 specification had an additional trap called enumerate
that was designed to alter how for-in and Object.keys() enumerated properties on
an object. However, the enumerate trap was removed in ECMAScript 7 (also called
ECMAScript 2016) because difficulties were discovered during implementation. The
enumerate trap no longer exists in any JavaScript environment and is therefore not
covered in this chapter.

Creating a Simple Proxy
When you use the Proxy constructor to make a proxy, you’ll pass it two argu-
ments: the target and a handler. A handler is an object that defines one or
more traps. The proxy uses the default behavior for all operations except
when traps are defined for that operation. To create a simple forwarding
proxy, you can use a handler with no traps, like this:

let target = {};

let proxy = new Proxy(target, {});

proxy.name = "proxy";

246 Chapter 12

console.log(proxy.name); // "proxy"
console.log(target.name); // "proxy"

target.name = "target";
console.log(proxy.name); // "target"
console.log(target.name); // "target"

In this example, proxy forwards all operations directly to target. When
"proxy" is assigned to the proxy.name property, name is created on target. The
proxy is not storing this property; it’s simply forwarding the operation
to target. Similarly, the values of proxy.name and target.name are the same
because they are both references to target.name. That also means setting
target.name to a new value causes proxy.name to reflect the same change. Of
course, proxies without traps aren’t very interesting, so what happens when
you define a trap?

Validating Properties Using the set Trap
Suppose you want to create an object whose property values must be num-
bers. That means every new property added to the object must be validated,
and an error must be thrown if the value isn’t a number. To accomplish this
task, you could define a set trap that overrides the default behavior of set-
ting a value. The set trap receives four arguments:

trapTarget The object that will receive the property (the proxy’s target)

key The property key (string or symbol) to write to

value The value being written to the property

receiver The object on which the operation took place (usually the
proxy)

Reflect.set() is the set trap’s corresponding reflection method, and it’s
the default behavior for this operation. The Reflect.set() method accepts the
same four arguments as the set proxy trap, making the method easy to use
inside the trap. The trap should return true if the property was set or false if
not. (The Reflect.set() method returns the correct value based on whether
the operation succeeded.)

To validate the values of properties, you would use the set trap and
inspect the value that is passed in. Here’s an example:

let target = {
 name: "target"
};

let proxy = new Proxy(target, {
 set(trapTarget, key, value, receiver) {

 // ignore existing properties so as not to affect them
 if (!trapTarget.hasOwnProperty(key)) {
 if (isNaN(value)) {
 throw new TypeError("Property must be a number.");

Proxies and the Reflection API 247

 }
 }

 // add the property
 return Reflect.set(trapTarget, key, value, receiver);
 }
});

// adding a new property
proxy.count = 1;
console.log(proxy.count); // 1
console.log(target.count); // 1

// you can assign to name because it exists on target already
proxy.name = "proxy";
console.log(proxy.name); // "proxy"
console.log(target.name); // "proxy"

// throws an error
proxy.anotherName = "proxy";

This code defines a proxy trap that validates the value of any new
property added to target. When proxy.count = 1 is executed, the set trap is
called. The trapTarget value is equal to target, key is "count", value is 1, and
receiver (not used in this example) is proxy. There is no existing property
named count in target, so the proxy validates value by passing it to isNaN().
If the result is NaN, the property value is not numeric and an error is thrown.
Because this code sets count to 1, the proxy calls Reflect.set() with the same
four arguments that were passed to the trap to add the new property.

When proxy.name is assigned a string, the operation completes success-
fully. Because target already has a name property, that property is omitted
from the validation check by calling the trapTarget.hasOwnProperty() method.
This ensures that previously existing nonnumeric property values are still
supported.

However, when proxy.anotherName is assigned a string, an error is thrown.
The anotherName property doesn’t exist on the target, so its value needs to
be validated. During validation, the error is thrown because "proxy" isn’t a
numeric value.

The set proxy trap lets you intercept when properties are being written
to, and the get proxy trap lets you intercept when properties are being read.

Object Shape Validation Using the get Trap
One of the peculiar, and sometimes confusing, aspects of JavaScript is that
reading nonexistent properties doesn’t throw an error. Instead, the value
undefined is used for the property value, as in this example:

let target = {};

console.log(target.name); // undefined

248 Chapter 12

In most other languages, attempting to read target.name throws an error
because the property doesn’t exist. But JavaScript just uses undefined for the
value of the target.name property. If you’ve ever worked on a large code base,
you’ve probably seen how this behavior can cause significant problems,
especially when there’s a typo in the property name. Proxies help you avoid
this problem by having object shape validation.

An object shape is the collection of properties and methods available
on the object. JavaScript engines use object shapes to optimize code,
often creating classes to represent the objects. If you can safely assume an
object will always have the same properties and methods it began with (a
behavior you can enforce with the Object.preventExtensions() method, the
Object.seal() method, or the Object.freeze() method), then throwing an
error on attempts to access nonexistent properties can be helpful. Proxies
make object shape validation easy.

Because property validation only has to happen when a property is
read, you would use the get trap. The get trap is called when a property
is read, even if that property doesn’t exist on the object, and it takes three
arguments:

trapTarget The object from which the property is read (the proxy’s
target)

key The property key (a string or symbol) to read

receiver The object on which the operation took place (usually the
proxy)

These arguments mirror the set trap’s arguments but with one notice-
able difference. There’s no value argument because get traps don’t write
values. The Reflect.get() method accepts the same three arguments as the
get trap and returns the property’s default value.

You can use the get trap and Reflect.get() to throw an error when a
property doesn’t exist on the target, as follows:

let proxy = new Proxy({}, {
 get(trapTarget, key, receiver) {
 if (!(key in receiver)) {
 throw new TypeError("Property " + key + " doesn't exist.");
 }

 return Reflect.get(trapTarget, key, receiver);
 }
});

// adding a property still works
proxy.name = "proxy";
console.log(proxy.name); // "proxy"

// nonexistent properties throw an error
console.log(proxy.nme); // throws an error

Proxies and the Reflection API 249

In this example, the get trap intercepts property read operations. The
in operator determines whether the property already exists on the receiver.
The receiver is used with in instead of trapTarget in case receiver is a proxy
with a has trap, a type I’ll cover in the next section. Using trapTarget in this
case would sidestep the has trap and potentially give you the wrong result.
An error is thrown if the property doesn’t exist; otherwise, the default
behavior is used.

This code allows new properties like proxy.name to be added, written to,
and read from without problems. The last line contains a typo: proxy.nme
should probably be proxy.name. This throws an error because nme doesn’t
exist as a property.

Hiding Property Existence Using the has Trap
The in operator determines whether a property exists on a given object and
returns true if an own property or a prototype property matches the name
or symbol. For example:

let target = {
 value: 42;
}

console.log("value" in target); // true
console.log("toString" in target); // true

Both value and toString exist on object, so in both cases the in operator
returns true. The value property is an own property, whereas toString is a
prototype property (inherited from Object). Proxies allow you to intercept
this operation and return a different value for in with the has trap.

The has trap is called whenever the in operator is used. When called,
two arguments are passed to the has trap:

trapTarget The object the property is read from (the proxy’s target)

key The property key (string or symbol) to check

The Reflect.has() method accepts these same arguments and returns the
default response for the in operator. Using the has trap and Reflect.has()
allows you to alter the behavior of in for some properties while reverting to
the default behavior for others. For instance, you could hide the value prop-
erty from the previous example like this:

let target = {
 name: "target",
 value: 42
};

250 Chapter 12

let proxy = new Proxy(target, {
 has(trapTarget, key) {

 if (key === "value") {
 return false;
 } else {
 return Reflect.has(trapTarget, key);
 }
 }
});

console.log("value" in proxy); // false
console.log("name" in proxy); // true
console.log("toString" in proxy); // true

The has trap for proxy checks whether key is "value" and returns false
if so. Otherwise, the default behavior is used via a call to the Reflect.has()
method. As a result, the in operator returns false for the value property,
even though value actually exists on the target. The other properties, name
and toString, correctly return true when used with the in operator.

Preventing Property Deletion with the deleteProperty Trap
The delete operator removes a property from an object and returns true
when it’s successful and false when it’s unsuccessful. In strict mode, delete
throws an error when you attempt to delete a nonconfigurable property; in
non-strict mode, delete simply returns false. Here’s an example:

let target = {
 name: "target",
 value: 42
};

Object.defineProperty(target, "name", { configurable: false });

console.log("value" in target); // true

let result1 = delete target.value;
console.log(result1); // true

console.log("value" in target); // false

// note: the following line throws an error in strict mode
let result2 = delete target.name;
console.log(result2); // false

console.log("name" in target); // true

The value property is deleted using the delete operator and, as a
result, the in operator returns false in the third console.log() call. The
nonconfigurable name property can’t be deleted, so the delete operator

Proxies and the Reflection API 251

simply returns false (if you run this code in strict mode, an error is
thrown instead). You can alter this behavior by using the deleteProperty
trap in a proxy.

The deleteProperty trap is called whenever the delete operator is used on
an object property. The trap is passed two arguments:

trapTarget The object from which the property should be deleted (the
proxy’s target)

key The property key (string or symbol) to delete

The Reflect.deleteProperty() method provides the default implementa-
tion of the deleteProperty trap and accepts the same two arguments. You can
combine Reflect.deleteProperty() and the deleteProperty trap to change how
the delete operator behaves. For instance, you could ensure that the value
property can’t be deleted, like so:

let target = {
 name: "target",
 value: 42
};

let proxy = new Proxy(target, {
 deleteProperty(trapTarget, key) {

 if (key === "value") {
 return false;
 } else {
 return Reflect.deleteProperty(trapTarget, key);
 }
 }
});

// attempt to delete proxy.value

console.log("value" in proxy); // true

let result1 = delete proxy.value;
console.log(result1); // false

console.log("value" in proxy); // true

// attempt to delete proxy.name

console.log("name" in proxy); // true

let result2 = delete proxy.name;
console.log(result2); // true

console.log("name" in proxy); // false

This code is very similar to the has trap example in that the deleteProperty
trap checks whether the key is "value" and returns false if so. Otherwise,
the default behavior is used by calling the Reflect.deleteProperty() method.

252 Chapter 12

The value property can’t be deleted through proxy because the operation
is trapped, but the name property is deleted as expected. This approach is
especially useful when you want to protect properties from deletion without
throwing an error in strict mode.

Prototype Proxy Traps
Chapter 4 introduced the Object.setPrototypeOf() method that ECMAScript 6
added to complement the ECMAScript 5 Object.getPrototypeOf() method.
Proxies allow you to intercept the execution of both methods through the
setPrototypeOf and getPrototypeOf traps. In both cases, the method on Object
calls the trap of the corresponding name on the proxy, allowing you to alter
the methods’ behavior.

Because two traps are associated with prototype proxies, a set of methods
is associated with each type of trap. The setPrototypeOf trap receives these
arguments:

trapTarget The object for which the prototype should be set (the
proxy’s target)

proto The object to use as the prototype

These are the same arguments passed to the Object.setPrototypeOf()
and Reflect.setPrototypeOf() methods. The getPrototypeOf trap, on the other
hand, only receives the trapTarget argument, which is the argument passed
to the Object.getPrototypeOf() and Reflect.getPrototypeOf() methods.

How Prototype Proxy Traps Work
Prototype proxy traps have some restrictions. First, the getPrototypeOf trap
must return an object or null, and any other return value results in a runtime
error. The return value check ensures that Object.getPrototypeOf() will always
return an expected value. Second, the return value of the setPrototypeOf trap
must be false if the operation doesn’t succeed. When setPrototypeOf returns
false, Object.setPrototypeOf() throws an error. If setPrototypeOf returns
any value other than false, Object.setPrototypeOf() assumes the operation
succeeded.

The following example hides the prototype of the proxy by always
returning null and also doesn’t allow the prototype to be changed:

let target = {};
let proxy = new Proxy(target, {
 getPrototypeOf(trapTarget) {
 return null;
 },
 setPrototypeOf(trapTarget, proto) {
 return false;
 }
});

Proxies and the Reflection API 253

let targetProto = Object.getPrototypeOf(target);
let proxyProto = Object.getPrototypeOf(proxy);

console.log(targetProto === Object.prototype); // true
console.log(proxyProto === Object.prototype); // false
console.log(proxyProto); // null

// succeeds
Object.setPrototypeOf(target, {});

// throws an error
Object.setPrototypeOf(proxy, {});

This code emphasizes the difference between the behavior of target
and proxy. Although Object.getPrototypeOf() returns a value for target, it
returns null for proxy because the getPrototypeOf trap is called. Similarly,
Object.setPrototypeOf() succeeds when it’s used on target but throws an
error when it’s used on proxy due to the setPrototypeOf trap.

If you want to use the default behavior for these two traps, you can use
the corresponding methods on Reflect. For instance, the following code
implements the default behavior for the getPrototypeOf and setPrototypeOf
traps:

let target = {};
let proxy = new Proxy(target, {
 getPrototypeOf(trapTarget) {
 return Reflect.getPrototypeOf(trapTarget);
 },
 setPrototypeOf(trapTarget, proto) {
 return Reflect.setPrototypeOf(trapTarget, proto);
 }
});

let targetProto = Object.getPrototypeOf(target);
let proxyProto = Object.getPrototypeOf(proxy);

console.log(targetProto === Object.prototype); // true
console.log(proxyProto === Object.prototype); // true

// succeeds
Object.setPrototypeOf(target, {});

// also succeeds
Object.setPrototypeOf(proxy, {});

In this example, you can use target and proxy interchangeably and get
the same results, because the getPrototypeOf and setPrototypeOf traps are
just passing through to use the default implementation. It’s important that
this example use the Reflect.getPrototypeOf() and Reflect.setPrototypeOf()
methods rather than the methods of the same name on Object due to some
important differences.

254 Chapter 12

Why Two Sets of Methods?
The confusing aspect of Reflect.getPrototypeOf() and Reflect.setPrototypeOf()
is that they look suspiciously similar to the Object.getPrototypeOf() and
Object.setPrototypeOf() methods. Although both sets of methods perform
similar operations, there are some distinct differences between the two.

Object.getPrototypeOf() and Object.setPrototypeOf() are higher-
level operations that were created for developer use from the start.
The Reflect.getPrototypeOf() and Reflect.setPrototypeOf() methods
are lower-level operations that give developers access to the previ-
ously internal-only [[GetPrototypeOf]] and [[SetPrototypeOf]] opera-
tions. The Reflect.getPrototypeOf() method is the wrapper for the
internal [[GetPrototypeOf]] operation (with some input validation).
The Reflect.setPrototypeOf() method and [[SetPrototypeOf]] have the
same relationship. The corresponding methods on Object also call
[[GetPrototypeOf]] and [[SetPrototypeOf]] but perform a few steps before
the call and inspect the return value to determine how to behave.

The Reflect.getPrototypeOf() method throws an error if its argument is
not an object, whereas Object.getPrototypeOf() first coerces the value into an
object before performing the operation. If you passed a number into each
method, you’d get a different result:

let result1 = Object.getPrototypeOf(1);
console.log(result1 === Number.prototype); // true

// throws an error
Reflect.getPrototypeOf(1);

The Object.getPrototypeOf() method allows you retrieve a prototype for
the number 1 because it first coerces the value into a Number object and then
returns Number.prototype. The Reflect.getPrototypeOf() method doesn’t coerce
the value, and because 1 isn’t an object, it throws an error.

The Reflect.setPrototypeOf() method is also different from the
Object.setPrototypeOf() method. Specifically, Reflect.setPrototypeOf()
returns a Boolean value indicating whether the operation was successful.
A true value is returned for success, and false is returned for failure. If
Object.setPrototypeOf() fails, it throws an error.

As the first example in “How Prototype Proxy Traps Work” on
page 252 showed, when the setPrototypeOf proxy trap returns false, it
causes Object.setPrototypeOf() to throw an error. The Object.setPrototypeOf()
method returns the first argument as its value and therefore isn’t suitable
for implementing the default behavior of the setPrototypeOf proxy trap. The
following code demonstrates these differences:

let target1 = {};
let result1 = Object.setPrototypeOf(target1, {});
console.log(result1 === target1); // true

let target2 = {};
let result2 = Reflect.setPrototypeOf(target2, {});

Proxies and the Reflection API 255

console.log(result2 === target2); // false
console.log(result2); // true

In this example, Object.setPrototypeOf() returns target1 as its value, but
Reflect.setPrototypeOf() returns true. This subtle difference is very impor-
tant. You’ll see more seemingly duplicate methods on Object and Reflect,
but always be sure to use the method on Reflect inside any proxy traps.

n o t e Reflect.getPrototypeOf()/Object.getPrototypeOf() and Reflect.setPrototypeOf()/
Object.setPrototypeOf() will call the getPrototypeOf and setPrototypeOf proxy
traps, respectively, when they’re used on a proxy.

Object Extensibility Traps
ECMAScript 5 added object extensibility modification through the
Object.preventExtensions() and Object.isExtensible() methods, and ECMA-
Script 6 allows proxies to intercept those method calls to the underlying
objects through the preventExtensions and isExtensible traps. Both traps
receive a single argument called trapTarget that is the object on which the
method was called. The isExtensible trap must return a Boolean value
indicating whether the object is extensible, and the preventExtensions trap
must return a Boolean value indicating whether the operation succeeded.

The Reflect.preventExtensions() and Reflect.isExtensible() methods
implement the default behavior. Both return Boolean values, so you can
use them directly in their corresponding traps.

Two Basic Examples
To see object extensibility traps in action, consider the following
code, which implements the default behavior for the isExtensible and
preventExtensions traps:

let target = {};
let proxy = new Proxy(target, {
 isExtensible(trapTarget) {
 return Reflect.isExtensible(trapTarget);
 },
 preventExtensions(trapTarget) {
 return Reflect.preventExtensions(trapTarget);
 }
});

console.log(Object.isExtensible(target)); // true
console.log(Object.isExtensible(proxy)); // true

Object.preventExtensions(proxy);

console.log(Object.isExtensible(target)); // false
console.log(Object.isExtensible(proxy)); // false

256 Chapter 12

This example shows that the methods Object.preventExtensions() and
Object.isExtensible() correctly pass through from proxy to target. You can,
of course, change the behavior. For example, if you don’t want to allow
Object.preventExtensions() to succeed on your proxy, you could return false
from the preventExtensions trap:

let target = {};
let proxy = new Proxy(target, {
 isExtensible(trapTarget) {
 return Reflect.isExtensible(trapTarget);
 },
 preventExtensions(trapTarget) {
 return false
 }
});

console.log(Object.isExtensible(target)); // true
console.log(Object.isExtensible(proxy)); // true

Object.preventExtensions(proxy);

console.log(Object.isExtensible(target)); // true
console.log(Object.isExtensible(proxy)); // true

Here, the call to Object.preventExtensions(proxy) is effectively ignored
because the preventExtensions trap returns false. The operation isn’t for-
warded to the underlying target, so Object.isExtensible() returns true.

Duplicate Extensibility Methods
You may have noticed that, once again, there are seemingly duplicate
methods on Object and Reflect. In this case, they’re more similar than not.
The methods Object.isExtensible() and Reflect.isExtensible() are similar
except when passed a nonobject value. In that case, Object.isExtensible()
always returns false and Reflect.isExtensible() throws an error. Here’s an
example of that behavior:

let result1 = Object.isExtensible(2);
console.log(result1); // false

// throws an error
let result2 = Reflect.isExtensible(2);

This restriction is similar to the difference between the methods
Object.getPrototypeOf() and Reflect.getPrototypeOf(), because the method
with lower-level functionality has stricter error checks than its higher-level
counterpart.

The Object.preventExtensions() and Reflect.preventExtensions() methods
are also very similar. The Object.preventExtensions() method always returns
the value that was passed to it as an argument, even if the value isn’t an

Proxies and the Reflection API 257

object. The Reflect.preventExtensions() method, on the other hand, throws
an error if the argument isn’t an object; if the argument is an object,
Reflect.preventExtensions() returns true when the operation succeeds or
false if not. For example:

let result1 = Object.preventExtensions(2);
console.log(result1); // 2

let target = {};
let result2 = Reflect.preventExtensions(target);
console.log(result2); // true

// throws an error
let result3 = Reflect.preventExtensions(2);

Here, Object.preventExtensions() passes through the value 2 as its return
value, even though 2 isn’t an object. The Reflect.preventExtensions() method
returns true when an object is passed to it and throws an error when 2 is
passed to it.

Property Descriptor Traps
One of the most important features of ECMAScript 5 was the ability to
define property attributes using the Object.defineProperty() method. In
earlier versions of JavaScript, there was no way to define an accessor prop-
erty, make a property read-only, or make a property nonenumerable. All
of these are possible with the Object.defineProperty() method, and you can
retrieve those attributes with the Object.getOwnPropertyDescriptor() method.

Proxies let you intercept calls to the Object.defineProperty() method and
the Object.getOwnPropertyDescriptor() method using the defineProperty and
getOwnPropertyDescriptor traps, respectively. The defineProperty trap receives
the following arguments:

trapTarget The object on which the property should be defined (the
proxy’s target)

key The string or symbol for the property

descriptor The descriptor object for the property

The defineProperty trap requires you to return true if the operation is
successful and false if not. The getOwnPropertyDescriptor trap receives only
trapTarget and key, and you are expected to return the descriptor. The cor-
responding Reflect.defineProperty() and Reflect.getOwnPropertyDescriptor()
methods accept the same arguments as their proxy trap counterparts.
Here’s an example that implements the default behavior for each trap:

let proxy = new Proxy({}, {
 defineProperty(trapTarget, key, descriptor) {
 return Reflect.defineProperty(trapTarget, key, descriptor);
 },

258 Chapter 12

 getOwnPropertyDescriptor(trapTarget, key) {
 return Reflect.getOwnPropertyDescriptor(trapTarget, key);
 }
});

Object.defineProperty(proxy, "name", {
 value: "proxy"
});

console.log(proxy.name); // "proxy"

let descriptor = Object.getOwnPropertyDescriptor(proxy, "name");

console.log(descriptor.value); // "proxy"

This code defines a property called "name" on the proxy using the
Object.defineProperty() method. The property descriptor for that property
is then retrieved by the Object.getOwnPropertyDescriptor() method.

Blocking Object.defineProperty()
The defineProperty trap requires you to return a Boolean value to indi-
cate whether the operation was successful. When true is returned,
the Object.defineProperty() method succeeds as usual; when false is
returned, the Object.defineProperty() method throws an error. You
can use this functionality to restrict the kinds of properties that the
Object.defineProperty() method can define. For instance, if you want to
prevent symbol properties from being defined, you could check that the
key is a string and return false if not, like this:

let proxy = new Proxy({}, {
 defineProperty(trapTarget, key, descriptor) {

 if (typeof key === "symbol") {
 return false;
 }

 return Reflect.defineProperty(trapTarget, key, descriptor);
 }
});

Object.defineProperty(proxy, "name", {
 value: "proxy"
});

console.log(proxy.name); // "proxy"

let nameSymbol = Symbol("name");

Proxies and the Reflection API 259

// throws an error
Object.defineProperty(proxy, nameSymbol, {
 value: "proxy"
});

The defineProperty proxy trap returns false when key is a symbol and
otherwise proceeds with the default behavior. When Object.defineProperty()
is called with "name" as the key, the method succeeds because the key is a
string. When Object.defineProperty() is called with nameSymbol, it throws an
error because the defineProperty trap returns false.

n o t e You can also have Object.defineProperty() silently fail by returning true and not
calling the Reflect.defineProperty() method. That will suppress the error while not
actually defining the property.

Descriptor Object Restrictions
To ensure consistent behavior when you’re using the Object.defineProperty()
and Object.getOwnPropertyDescriptor() methods, descriptor objects passed
to the defineProperty trap are normalized. Objects returned from the
getOwnPropertyDescriptor trap are always validated for the same reason.

No matter what object is passed as the third argument to the method
Object.defineProperty(), only the properties enumerable, configurable, value,
writable, get, and set will be on the descriptor object passed to the
defineProperty trap. For example:

let proxy = new Proxy({}, {
 defineProperty(trapTarget, key, descriptor) {
 console.log(descriptor.value); // "proxy"
 console.log(descriptor.name); // undefined

 return Reflect.defineProperty(trapTarget, key, descriptor);
 }
});

Object.defineProperty(proxy, "name", {
 value: "proxy",
 name: "custom"
});

Here, Object.defineProperty() is called with a nonstandard name property
on the third argument. When the defineProperty trap is called, the descriptor
object doesn’t have a name property but does have a value property. The reason
is that descriptor isn’t a reference to the actual third argument passed to the
Object.defineProperty() method, but rather a new object that contains only
the allowable properties. The Reflect.defineProperty() method also ignores
any nonstandard properties on the descriptor.

260 Chapter 12

The getOwnPropertyDescriptor trap has a slightly different restriction that
requires the return value to be null, undefined, or an object. If an object
is returned, only enumerable, configurable, value, writable, get, and set are
allowed as own properties of the object. An error is thrown if you return
an object with an own property that isn’t allowed, as this code shows:

let proxy = new Proxy({}, {
 getOwnPropertyDescriptor(trapTarget, key) {
 return {
 name: "proxy";
 };
 }
});

// throws an error
let descriptor = Object.getOwnPropertyDescriptor(proxy, "name");

The property name isn’t allowable on property descriptors, so when
Object.getOwnPropertyDescriptor() is called, the getOwnPropertyDescriptor
return value triggers an error. This restriction ensures that the value
returned by Object.getOwnPropertyDescriptor() always has a reliable struc-
ture regardless of the method’s use on proxies.

Duplicate Descriptor Methods
Once again, ECMAScript 6 has some confusingly similar methods:
the Object.defineProperty() and Object.getOwnPropertyDescriptor() meth-
ods appear to do the same thing as the Reflect.defineProperty() and
Reflect.getOwnPropertyDescriptor() methods, respectively. Like other
method pairs discussed earlier in this chapter, these four methods
have some subtle but important differences.

defineProperty() Methods

The Object.defineProperty() and Reflect.defineProperty() methods are the
same except for their return values. The Object.defineProperty() method
returns the first argument, whereas Reflect.defineProperty() returns true if
the operation succeeded and false if not. For example:

let target = {};

let result1 = Object.defineProperty(target, "name", { value: "target "});

console.log(target === result1); // true

let result2 = Reflect.defineProperty(target, "name", { value: "reflect" });

console.log(result2); // true

Proxies and the Reflection API 261

When Object.defineProperty() is called on target, the return value
is target. When Reflect.defineProperty() is called on target, the return
value is true, indicating that the operation succeeded. Because the
defineProperty proxy trap requires a Boolean value to be returned, it’s
best to use Reflect.defineProperty() to implement the default behavior
when necessary.

getOwnPropertyDescriptor() Methods

The Object.getOwnPropertyDescriptor() method coerces its first argument
into an object when a primitive value is passed and then continues the
operation. On the other hand, the Reflect.getOwnPropertyDescriptor()
method throws an error if the first argument is a primitive value. Here’s
an example that shows both:

let descriptor1 = Object.getOwnPropertyDescriptor(2, "name");
console.log(descriptor1); // undefined

// throws an error
let descriptor2 = Reflect.getOwnPropertyDescriptor(2, "name");

The Object.getOwnPropertyDescriptor() method returns undefined because
it coerces 2 into an object, and that object has no name property. This is the
method’s standard behavior when a property with the given name isn’t
found on an object. However, when Reflect.getOwnPropertyDescriptor() is
called, an error is thrown immediately because that method doesn’t accept
primitive values for the first argument.

The ownKeys Trap
The ownKeys proxy trap intercepts the internal method [[OwnPropertyKeys]]
and allows you to override that behavior by returning an array of values.
This array is used in four methods: the Object.keys() method, the
Object.getOwnPropertyNames() method, the Object.getOwnPropertySymbols()
method, and the Object.assign() method. (The Object.assign() method
uses the array to determine which properties to copy.)

The default behavior for the ownKeys trap is implemented by the
Reflect.ownKeys() method and returns an array of all own property keys,
including strings and symbols. The Object.getOwnPropertyNames() method
and the Object.keys() method filter symbols out of the array and return
the result, whereas Object.getOwnPropertySymbols() filters the strings out of the
array and returns the result. The Object.assign() method uses the array with
both strings and symbols.

The ownKeys trap receives a single argument, the target, and must
always return an array or array-like object; otherwise, an error is thrown.
You can use the ownKeys trap to, for example, filter out certain prop-
erty keys that you don’t want used when the Object.keys() method, the
Object.getOwnPropertyNames() method, the Object.getOwnPropertySymbols()

262 Chapter 12

method, or the Object.assign() method is used. Suppose you don’t want to
include any property names that begin with an underscore character—a
common notation in JavaScript indicating that a field is private. You can use
the ownKeys trap to filter out those keys as follows:

let proxy = new Proxy({}, {
 ownKeys(trapTarget) {
 return Reflect.ownKeys(trapTarget).filter(key => {
 return typeof key !== "string" || key[0] !== "_";
 });
 }
});

let nameSymbol = Symbol("name");

proxy.name = "proxy";
proxy._name = "private";
proxy[nameSymbol] = "symbol";

let names = Object.getOwnPropertyNames(proxy),
 keys = Object.keys(proxy),
 symbols = Object.getOwnPropertySymbols(proxy);

console.log(names.length); // 1
console.log(names[0]); // "proxy"

console.log(keys.length); // 1
console.log(keys[0]); // "proxy"

console.log(symbols.length); // 1
console.log(symbols[0]); // "Symbol(name)"

This example uses an ownKeys trap that first calls Reflect.ownKeys() to get
the default list of keys for the target. Next, the filter() method is used to fil-
ter out keys that are strings and begin with an underscore character. Then,
three properties are added to the proxy object: name, _name, and nameSymbol.
When Object.getOwnPropertyNames() and Object.keys() are called on proxy, only
the name property is returned. Similarly, only nameSymbol is returned when
Object.getOwnPropertySymbols() is called on proxy. The _name property doesn’t
appear in either result because it is filtered out.

Although the ownKeys proxy trap allows you to alter the keys returned
from a small set of operations, it doesn’t affect more commonly used opera-
tions, such as the for-of loop and the Object.keys() method. Those can’t be
altered using proxies. The ownKeys trap also affects the for-in loop, which
calls the trap to determine which keys to use inside of the loop.

Function Proxies with the apply and construct Traps
Of all the proxy traps, only apply and construct require the proxy target to be
a function. Recall from Chapter 3 that functions have two internal methods
called [[Call]] and [[Construct]] that are executed when a function is called

Proxies and the Reflection API 263

without and with the new operator, respectively. The apply and construct traps
correspond to and let you override those internal methods. When a function
is called without new, the apply trap receives, and Reflect.apply() expects, the
following arguments:

trapTarget The function being executed (the proxy’s target)

thisArg The value of this inside the function during the call

argumentsList An array of arguments passed to the function

The construct trap, which is called when the function is executed using
new, receives the following arguments:

trapTarget The function being executed (the proxy’s target)

argumentsList An array of arguments passed to the function

The Reflect.construct() method also accepts these two arguments and
has an optional third argument called newTarget. When given, the newTarget
argument specifies the value of new.target inside the function.

Together, the apply and construct traps completely control the behavior
of any proxy target function. To mimic the default behavior of a function,
you can do this:

let target = function() { return 42 },
 proxy = new Proxy(target, {
 apply: function(trapTarget, thisArg, argumentList) {
 return Reflect.apply(trapTarget, thisArg, argumentList);
 },
 construct: function(trapTarget, argumentList) {
 return Reflect.construct(trapTarget, argumentList);
 }
 });

// a proxy with a function as its target looks like a function
console.log(typeof proxy); // "function"

console.log(proxy()); // 42

var instance = new proxy();
console.log(instance instanceof proxy); // true
console.log(instance instanceof target); // true

Here, you have a function that returns the number 42. The proxy for
that function uses the apply and construct traps to delegate those behaviors
to the Reflect.apply() and Reflect.construct() methods, respectively. The
end result is that the proxy function works exactly like the target function,
including identifying itself as a function when typeof is used. The proxy
is called without new to return 42 and then is called with new to create an
object called instance. The instance object is considered an instance of both
proxy and target because instanceof uses the prototype chain to determine
this information. Prototype chain lookup is not affected by this proxy,
which is why proxy and target appear to have the same prototype.

264 Chapter 12

Validating Function Parameters
The apply and construct traps open several possibilities for altering the
way a function is executed. For instance, suppose you want to validate that
all arguments are of a specific type. You can check the arguments in the
apply trap:

// adds together all arguments
function sum(...values) {
 return values.reduce((previous, current) => previous + current, 0);
}

let sumProxy = new Proxy(sum, {
 apply: function(trapTarget, thisArg, argumentList) {

 argumentList.forEach((arg) => {
 if (typeof arg !== "number") {
 throw new TypeError("All arguments must be numbers.");
 }
 });

 return Reflect.apply(trapTarget, thisArg, argumentList);
 },
 construct: function(trapTarget, argumentList) {
 throw new TypeError("This function can't be called with new.");
 }
});

console.log(sumProxy(1, 2, 3, 4)); // 10

// throws an error
console.log(sumProxy(1, "2", 3, 4));

// also throws an error
let result = new sumProxy();

This example uses the apply trap to ensure that all arguments are
numbers. The sum() function adds all the arguments that are passed. If
a nonnumber value is passed, the function will still attempt the opera-
tion, which can cause unexpected results. By wrapping sum() inside the
sumProxy() proxy, this code intercepts function calls and ensures that each
argument is a number before allowing the call to proceed. To be safe,
the code also uses the construct trap to ensure that the function can’t be
called with new.

You can also do the opposite, ensuring that a function must be called
with new and validating its arguments as numbers:

function Numbers(...values) {
 this.values = values;
}

Proxies and the Reflection API 265

let NumbersProxy = new Proxy(Numbers, {
 apply: function(trapTarget, thisArg, argumentList) {
 throw new TypeError("This function must be called with new.");
 },

 construct: function(trapTarget, argumentList) {
 argumentList.forEach((arg) => {
 if (typeof arg !== "number") {
 throw new TypeError("All arguments must be numbers.");
 }
 });

 return Reflect.construct(trapTarget, argumentList);
 }
});

let instance = new NumbersProxy(1, 2, 3, 4);
console.log(instance.values); // [1,2,3,4]

// throws an error
NumbersProxy(1, 2, 3, 4);

Here, the apply trap throws an error, and the construct trap uses the
Reflect.construct() method to validate input and return a new instance. Of
course, you can accomplish the same thing without proxies using new.target
instead.

Calling Constructors Without new
Chapter 3 introduced the new.target metaproperty. To review, new.target is
a reference to the function on which new is called, meaning that you can
determine whether a function was called using new or not by checking the
value of new.target, like this:

function Numbers(...values) {

 if (typeof new.target === "undefined") {
 throw new TypeError("This function must be called with new.");
 }

 this.values = values;
}

let instance = new Numbers(1, 2, 3, 4);
console.log(instance.values); // [1,2,3,4]

// throws an error
Numbers(1, 2, 3, 4);

This code throws an error when Numbers() is called without using new,
which is similar to the second example in “Validating Function Parameters”
on page 264 but doesn’t use a proxy. Writing code like this is much simpler
than using a proxy and is preferable if your only goal is to prevent calling

266 Chapter 12

the function without new. But sometimes you’re not in control of the func-
tion whose behavior needs to be modified. In that case, using a proxy makes
sense.

Suppose the Numbers() function is defined in code you can’t modify. You
know that the code relies on new.target and want to avoid that check while
still calling the function. The behavior when using new is already set, so you
can just use the apply trap:

function Numbers(...values) {

 if (typeof new.target === "undefined") {
 throw new TypeError("This function must be called with new.");
 }

 this.values = values;
}

let NumbersProxy = new Proxy(Numbers, {
 apply: function(trapTarget, thisArg, argumentsList) {
 return Reflect.construct(trapTarget, argumentsList);
 }
});

let instance = NumbersProxy(1, 2, 3, 4);
console.log(instance.values); // [1,2,3,4]

The NumbersProxy() function allows you to call Numbers() without using
new and have it behave as if new were used. To do so, the apply trap calls
Reflect.construct() with the arguments passed into apply. The new.target
inside Numbers() is equal to Numbers(), so no error is thrown. Although this is
a simple example of modifying new.target, you can also do so more directly.

Overriding Abstract Base Class Constructors
You can go one step further to modify new.target by specifying the third
argument to Reflect.construct() as the specific value to assign to new.target.
This technique is useful when a function is checking new.target against
a known value, such as when you’re creating an abstract base class con-
structor (discussed in Chapter 9). In an abstract base class constructor,
new.target is expected to be something other than the class constructor, as
in this example:

class AbstractNumbers {

 constructor(...values) {
 if (new.target === AbstractNumbers) {
 throw new TypeError("This function must be inherited from.");
 }

 this.values = values;

Proxies and the Reflection API 267

 }
}

class Numbers extends AbstractNumbers {}

let instance = new Numbers(1, 2, 3, 4);
console.log(instance.values); // [1,2,3,4]

// throws an error
new AbstractNumbers(1, 2, 3, 4);

When new AbstractNumbers() is called, new.target is equal to AbstractNumbers
and an error is thrown. Calling new Numbers() still works because new.target
is equal to Numbers. You can bypass the constructor restriction by manually
assigning new.target with a proxy:

class AbstractNumbers {

 constructor(...values) {
 if (new.target === AbstractNumbers) {
 throw new TypeError("This function must be inherited from.");
 }

 this.values = values;
 }
}

let AbstractNumbersProxy = new Proxy(AbstractNumbers, {
 construct: function(trapTarget, argumentList) {
 return Reflect.construct(trapTarget, argumentList, function() {});
 }
});

let instance = new AbstractNumbersProxy(1, 2, 3, 4);
console.log(instance.values); // [1,2,3,4]

The AbstractNumbersProxy uses the construct trap to intercept the call to
the new AbstractNumbersProxy() method. Then, the Reflect.construct() method
is called with arguments from the trap and adds an empty function as the
third argument. That empty function is used as the value of new.target
inside the constructor. Because new.target is not equal to AbstractNumbers,
no error is thrown and the constructor executes completely.

Callable Class Constructors
Chapter 9 explained that class constructors must always be called with new
because the internal [[Call]] method for class constructors is specified
to throw an error. But proxies can intercept calls to the [[Call]] method,
meaning you can effectively create callable class constructors by using a

268 Chapter 12

proxy. For instance, if you want a class constructor to work without using
new, you can use the apply trap to create a new instance. Here’s some sample
code to demonstrate:

class Person {
 constructor(name) {
 this.name = name;
 }
}

let PersonProxy = new Proxy(Person, {
 apply: function(trapTarget, thisArg, argumentList) {
 return new trapTarget(...argumentList);
 }
});

let me = PersonProxy("Nicholas");
console.log(me.name); // "Nicholas"
console.log(me instanceof Person); // true
console.log(me instanceof PersonProxy); // true

The PersonProxy object is a proxy of the Person class constructor. Class
constructors are just functions, so they behave like functions when they’re
used in proxies. The apply trap overrides the default behavior and instead
returns a new instance of trapTarget that’s equal to Person. (I used trapTarget
in this example to show that you don’t need to manually specify the class.)
The argumentList is passed to trapTarget using the spread operator to pass
each argument separately. Calling PersonProxy() without using new returns
an instance of Person; if you attempt to call Person() without new, the con-
structor will still throw an error. Creating callable class constructors is only
possible using proxies.

Revocable Proxies
Normally, a proxy can’t be unbound from its target once the proxy has been
created. All of the examples to this point in this chapter have used non-
revocable proxies. But there may be situations in which you want to revoke
a proxy so it can no longer be used. You’ll find it most helpful to revoke
proxies when you want to provide an object through an API for security
purposes and maintain the ability to cut off access to some functionality at
any point in time.

You can create revocable proxies using the Proxy.revocable() method,
which takes the same arguments as the Proxy constructor—a target object
and the proxy handler. The return value is an object with the following
properties:

proxy The proxy object that can be revoked

revoke The function to call to revoke the proxy

Proxies and the Reflection API 269

When the revoke() function is called, no further operations can be per-
formed through the proxy. Any attempt to interact with the proxy object in a
way that would trigger a proxy trap throws an error. For example:

let target = {
 name: "target"
};

let { proxy, revoke } = Proxy.revocable(target, {});

console.log(proxy.name); // "target"

revoke();

// throws an error
console.log(proxy.name);

This example creates a revocable proxy. It uses destructuring to assign
the proxy and revoke variables to the properties of the same name on the
object returned by the Proxy.revocable() method. After that, the proxy object
can be used just like a nonrevocable proxy object, so proxy.name returns
"target" because it passes through to target.name. However, once the revoke()
function is called, proxy no longer functions. Attempting to access proxy.name
throws an error, as will any other operation that would trigger a trap on
proxy.

Solving the Array Problem
At the beginning of this chapter, I explained how developers couldn’t mimic
the behavior of an array accurately in JavaScript prior to ECMAScript 6.
Proxies and the reflection API allow you to create an object that behaves in
the same manner as the built-in Array type when properties are added and
removed. To refresh your memory, here’s an example that shows the behavior
that proxies help to mimic:

let colors = ["red", "green", "blue"];

console.log(colors.length); // 3

colors[3] = "black";

console.log(colors.length); // 4
console.log(colors[3]); // "black"

colors.length = 2;

console.log(colors.length); // 2
console.log(colors[3]); // undefined
console.log(colors[2]); // undefined
console.log(colors[1]); // "green"

270 Chapter 12

Notice two particularly important behaviors in this example:

•	 The length property is increased to 4 when colors[3] is assigned a value.

•	 The last two items in the array are deleted when the length property is
set to 2.

These two behaviors are the only ones that need to be mimicked to
accurately re-create how built-in arrays work. The next few sections describe
how to make an object that correctly mimics them.

Detecting Array Indexes
Keep in mind that assigning a value to an integer property key is a special
case for arrays, because they’re treated differently from non-integer keys.
The ECMAScript 6 specification gives the following instructions on how to
determine whether a property key is an array index:

A String property name P is an array index if and only if
ToString(ToUint32(P)) is equal to P and ToUint32(P) is not
equal to 232-1.

This operation can be implemented in JavaScript as follows:

function toUint32(value) {
 return Math.floor(Math.abs(Number(value))) % Math.pow(2, 32);
}

function isArrayIndex(key) {
 let numericKey = toUint32(key);
 return String(numericKey) == key && numericKey < (Math.pow(2, 32) - 1);
}

The toUint32() function converts a given value into an unsigned
32-bit integer using an algorithm described in the specification. The
isArrayIndex() function first converts the key into a uint32 and then per-
forms the comparisons to determine whether or not the key is an array
index. With these two utility functions available, you can start to imple-
ment an object that will mimic a built-in array.

Increasing length When Adding New Elements
Notice that both array behaviors I described previously rely on the assign-
ment of a property. That means you only need to use the set proxy trap
to accomplish both behaviors. To get started, look at this example, which
implements the first of the two behaviors by incrementing the length prop-
erty when an array index larger than length - 1 is used:

function toUint32(value) {
 return Math.floor(Math.abs(Number(value))) % Math.pow(2, 32);
}

Proxies and the Reflection API 271

function isArrayIndex(key) {
 let numericKey = toUint32(key);
 return String(numericKey) == key && numericKey < (Math.pow(2, 32) - 1);
}

function createMyArray(length=0) {
 return new Proxy({ length }, {
 set(trapTarget, key, value) {

 let currentLength = Reflect.get(trapTarget, "length");

 // the special case
 if (isArrayIndex(key)) {
 let numericKey = Number(key);

 if (numericKey >= currentLength) {
 Reflect.set(trapTarget, "length", numericKey + 1);
 }
 }

 // always do this regardless of key type
 return Reflect.set(trapTarget, key, value);
 }
 });
}

let colors = createMyArray(3);
console.log(colors.length); // 3

colors[0] = "red";
colors[1] = "green";
colors[2] = "blue";

console.log(colors.length); // 3

colors[3] = "black";

console.log(colors.length); // 4
console.log(colors[3]); // "black"

This code uses the set proxy trap to intercept the setting of an array
index. If the key is an array index, it is converted into a number because
keys are always passed as strings. Next, if that numeric value is greater than
or equal to the current length property, the length property is updated to
be one more than the numeric key (setting an item in position 3 means the
length must be 4). Then, the default behavior for setting a property is used via
Reflect.set(), because you want the property to receive the value as specified.

The initial custom array is created by calling createMyArray() with a length
of 3, and the values for those three items are added immediately afterward.
The length property correctly remains at 3 until the value "black" is assigned
to position 3. At that point, length is set to 4.

With the first array behavior working, it’s time to move on to the second
behavior.

272 Chapter 12

Deleting Elements When Reducing length
The first array behavior to mimic is used only when an array index is
greater than or equal to the length property. The second behavior does
the opposite and removes array items when the length property is set to a
smaller value than it previously contained. That involves not only changing
the length property but also deleting all items that might otherwise exist.
For instance, if an array with a length of 4 has length set to 2, the items in
positions 2 and 3 are deleted. You can accomplish this inside the set proxy
trap alongside the first behavior. Here’s the previous example again but
with an updated createMyArray method:

function toUint32(value) {
 return Math.floor(Math.abs(Number(value))) % Math.pow(2, 32);
}

function isArrayIndex(key) {
 let numericKey = toUint32(key);
 return String(numericKey) == key && numericKey < (Math.pow(2, 32) - 1);
}

function createMyArray(length=0) {
 return new Proxy({ length }, {
 set(trapTarget, key, value) {

 let currentLength = Reflect.get(trapTarget, "length");

 // the special case
 if (isArrayIndex(key)) {
 let numericKey = Number(key);

 if (numericKey >= currentLength) {
 Reflect.set(trapTarget, "length", numericKey + 1);
 }
 } else if (key === "length") {

 if (value < currentLength) {
 for (let index = currentLength - 1; index >= value;
 index--) {
 Reflect.deleteProperty(trapTarget, index);
 }
 }

 }

 // always do this regardless of key type
 return Reflect.set(trapTarget, key, value);
 }
 });
}

let colors = createMyArray(3);
console.log(colors.length); // 3

Proxies and the Reflection API 273

colors[0] = "red";
colors[1] = "green";
colors[2] = "blue";
colors[3] = "black";

console.log(colors.length); // 4

colors.length = 2;

console.log(colors.length); // 2
console.log(colors[3]); // undefined
console.log(colors[2]); // undefined
console.log(colors[1]); // "green"
console.log(colors[0]); // "red"

The set proxy trap in this code checks whether key is "length" in order
to adjust the rest of the object correctly. When that check happens, the cur-
rent length is first retrieved using Reflect.get() and compared against the
new value. If the new value is less than the current length, a for loop deletes
all properties on the target that should no longer be available. The for loop
goes backward from the current array length (currentLength) and deletes
each property until it reaches the new array length (value).

This example adds four colors to colors and then sets the length prop-
erty to 2. That effectively removes the items in positions 2 and 3, so they
now return undefined when you attempt to access them. The length property
is correctly set to 2, and the items in positions 0 and 1 are still accessible.

With both behaviors implemented, you can easily create an object that
mimics the behavior of built-in arrays. But doing so with a function isn’t as
desirable as creating a class to encapsulate this behavior, so the next step is
to implement this functionality as a class.

Implementing the MyArray Class
The simplest way to create a class that uses a proxy is to define the class as
usual and then return a proxy from the constructor. That way, the object
returned when a class is instantiated will be the proxy instead of the
instance. (The instance is the value of this inside the constructor.) The
instance becomes the target of the proxy, and the proxy is returned as if
it were the instance. The instance will be completely private, and you won’t
be able to access it directly, although you’ll be able to access it indirectly
through the proxy.

Here’s a simple example of returning a proxy from a class constructor:

class Thing {
 constructor() {
 return new Proxy(this, {});
 }
}

let myThing = new Thing();
console.log(myThing instanceof Thing); // true

274 Chapter 12

In this example, the class Thing returns a proxy from its constructor.
The proxy target is this, and the proxy is returned from the constructor.
That means myThing is actually a proxy, even though it was created by calling
the Thing constructor. Because proxies pass through their behavior to their
targets, myThing is still considered an instance of Thing, making the proxy
completely transparent to anyone using the Thing class.

With the understanding that you can return a proxy from a constructor
in mind, creating a custom array class using a proxy is relatively straight-
forward. The code is mostly the same as the code in “Deleting Elements
When Reducing length” on page 272. You can use the same proxy code,
but this time you need to place it inside a class constructor. Here’s the com-
plete example:

function toUint32(value) {
 return Math.floor(Math.abs(Number(value))) % Math.pow(2, 32);
}

function isArrayIndex(key) {
 let numericKey = toUint32(key);
 return String(numericKey) == key && numericKey < (Math.pow(2, 32) - 1);
}

class MyArray {
 constructor(length=0) {
 this.length = length;

 return new Proxy(this, {
 set(trapTarget, key, value) {

 let currentLength = Reflect.get(trapTarget, "length");

 // the special case
 if (isArrayIndex(key)) {
 let numericKey = Number(key);

 if (numericKey >= currentLength) {
 Reflect.set(trapTarget, "length", numericKey + 1);
 }
 } else if (key === "length") {

 if (value < currentLength) {
 for (let index = currentLength - 1; index >= value;
 index--) {
 Reflect.deleteProperty(trapTarget, index);
 }
 }

 }

Proxies and the Reflection API 275

 // always do this regardless of key type
 return Reflect.set(trapTarget, key, value);
 }
 });

 }
}

let colors = new MyArray(3);
console.log(colors instanceof MyArray); // true

console.log(colors.length); // 3

colors[0] = "red";
colors[1] = "green";
colors[2] = "blue";
colors[3] = "black";

console.log(colors.length); // 4

colors.length = 2;

console.log(colors.length); // 2
console.log(colors[3]); // undefined
console.log(colors[2]); // undefined
console.log(colors[1]); // "green"
console.log(colors[0]); // "red"

This code creates a MyArray class that returns a proxy from its construc-
tor. The length property is added in the constructor (initialized to either the
value that is passed in or to a default value of 0) and then a proxy is created
and returned. This makes the colors variable appear as though it’s just an
instance of MyArray and implements both key array behaviors.

Although returning a proxy from a class constructor is easy, it also
means that a new proxy is created for every instance. However, there is
a way to have all instances share one proxy: you can use the proxy as a
prototype.

Using a Proxy as a Prototype
Although you can use proxies as prototypes, doing so is a bit more involved
than the previous examples in this chapter. When a proxy is a prototype,
the proxy traps are only called when the default operation would normally
continue on to the prototype, which limits a proxy’s capabilities as a proto-
type. Consider the following example.

276 Chapter 12

let target = {};
let newTarget = Object.create(new Proxy(target, {

 // never called
 defineProperty(trapTarget, name, descriptor) {

 // would cause an error if called
 return false;
 }
}));

Object.defineProperty(newTarget, "name", {
 value: "newTarget"
});

console.log(newTarget.name); // "newTarget"
console.log(newTarget.hasOwnProperty("name")); // true

The newTarget object is created with a proxy as the prototype. Making
target the proxy target effectively makes target the prototype of newTarget
because the proxy is transparent. Now, proxy traps will only be called if
an operation on newTarget would pass the operation through to happen on
target.

The Object.defineProperty() method is called on newTarget to create an
own property called name. Defining a property on an object isn’t an opera-
tion that normally continues to the object’s prototype, so the defineProperty
trap on the proxy is never called and the name property is added to newTarget
as an own property.

Although proxies are severely limited when they’re used as prototypes,
a few traps are still useful. I’ll cover those in the next few sections.

Using the get Trap on a Prototype
When the internal [[Get]] method is called to read a property, the operation
looks for own properties first. If an own property with the given name isn’t
found, the operation continues to the prototype and looks for a property
there. The process continues until there are no further prototypes to check.

Because of that process, if you set up a get proxy trap, the trap will be
called on a prototype whenever an own property of the given name doesn’t
exist. You can use the get trap to prevent unexpected behavior when access-
ing properties that you can’t guarantee will exist. Just create an object that
throws an error whenever you try to access a property that doesn’t exist:

let target = {};
let thing = Object.create(new Proxy(target, {
 get(trapTarget, key, receiver) {
 throw new ReferenceError(`${key} doesn't exist`);
 }
}));

thing.name = "thing";

Proxies and the Reflection API 277

console.log(thing.name); // "thing"

// throws an error
let unknown = thing.unknown;

In this code, the thing object is created with a proxy as its prototype. The
get trap throws an error when called to indicate that the given key doesn’t
exist on the thing object. When thing.name is read, the operation never calls the
get trap on the prototype because the property exists on thing. The get trap is
called only when the thing.unknown property, which doesn’t exist, is accessed.

When the last line executes, unknown isn’t an own property of thing, so
the operation continues to the prototype. The get trap then throws an error.
This type of behavior can be very useful in JavaScript where unknown prop-
erties silently return undefined instead of throwing an error (which happens
in other languages).

It’s important to understand that in this example, trapTarget and
receiver are different objects. When a proxy is used as a prototype, the
trapTarget is the prototype object and the receiver is the instance object.
In this case, that means trapTarget is equal to target and receiver is equal
to thing. That allows you access to the original target of the proxy and the
object on which the operation is meant to take place.

Using the set Trap on a Prototype
The internal [[Set]] method also checks for own properties and then con-
tinues to the prototype if needed. When you assign a value to an object
property, the value is assigned to the own property with the same name if
it exists. If no own property with the given name exists, the operation con-
tinues to the prototype. The tricky part is that even though the assignment
operation continues to the prototype, assigning a value to that property will
create a property on the instance (not the prototype) by default regardless
of whether a property of that name exists on the prototype.

To get a better idea of when the set trap will be called on a prototype
and when it won’t, consider the following example, which shows the default
behavior:

let target = {};
let thing = Object.create(new Proxy(target, {
 set(trapTarget, key, value, receiver) {
 return Reflect.set(trapTarget, key, value, receiver);
 }
}));

console.log(thing.hasOwnProperty("name")); // false

// triggers the `set` proxy trap
thing.name = "thing";

console.log(thing.name); // "thing"
console.log(thing.hasOwnProperty("name")); // true

278 Chapter 12

// does not trigger the `set` proxy trap
thing.name = "boo";

console.log(thing.name); // "boo"

In this example, target starts with no own properties. The thing object
has a proxy as its prototype that defines a set trap to catch the creation
of any new properties. When thing.name is assigned "thing" as its value, the
set proxy trap is called because thing doesn’t have an own property called
name. Inside the set trap, trapTarget is equal to target and receiver is equal to
thing. The operation should ultimately create a new property on thing, and
fortunately, Reflect.set() implements this default behavior for you if you
pass in receiver as the fourth argument.

Once the name property is created on thing, setting thing.name to a differ-
ent value will no longer call the set proxy trap. At that point, name is an own
property, so the [[Set]] operation never continues on to the prototype.

Using the has Trap on a Prototype
Recall that the has trap intercepts the use of the in operator on objects. The
in operator searches first for an object’s own property with the given name.
If an own property with that name doesn’t exist, the operation continues
to the prototype. If there’s no own property on the prototype, the search
continues through the prototype chain until the own property is found or
there are no more prototypes to search.

The has trap is therefore only called when the search reaches the proxy
object in the prototype chain. When you’re using a proxy as a prototype,
the has trap is only called when there’s no own property of the given name.
For example:

let target = {};
let thing = Object.create(new Proxy(target, {
 has(trapTarget, key) {
 return Reflect.has(trapTarget, key);
 }
}));

// triggers the `has` proxy trap
console.log("name" in thing); // false

thing.name = "thing";

// does not trigger the `has` proxy trap
console.log("name" in thing); // true

This code creates a has proxy trap on the prototype of thing. The has
trap isn’t passed a receiver object like the get and set traps are, because
searching the prototype happens automatically when the in operator is
used. Instead, the has trap must operate only on trapTarget, which is equal
to target. The first time the in operator is used in this example, the has trap
is called because the property name doesn’t exist as an own property of thing.

Proxies and the Reflection API 279

When thing.name is given a value and the in operator is used again, the has
trap isn’t called because the operation stops after finding the own property
name on thing.

The prototype examples to this point have focused on objects created
using the Object.create() method. But if you want to create a class that has a
proxy as a prototype, the process is a bit more involved.

Proxies as Prototypes on Classes
Classes cannot be directly modified to use a proxy as a prototype because
their prototype property is nonwritable. However, you can use a bit of mis-
direction to create a class that has a proxy as its prototype by using inheri-
tance. To start, you need to create an ECMAScript 5–style type definition
using a constructor function. You can then overwrite the prototype to be a
proxy. Here’s an example:

function NoSuchProperty() {
 // empty
}

NoSuchProperty.prototype = new Proxy({}, {
 get(trapTarget, key, receiver) {
 throw new ReferenceError(`${key} doesn't exist`);
 }
});

let thing = new NoSuchProperty();

// throws an error due to `get` proxy trap
let result = thing.name;

The NoSuchProperty function represents the base from which the class
will inherit. There are no restrictions on the prototype property of func-
tions, so you can overwrite it with a proxy. The get trap is used to throw
an error when the property doesn’t exist. The thing object is created as an
instance of NoSuchProperty and throws an error when the nonexistent name
property is accessed.

The next step is to create a class that inherits from NoSuchProperty. You
can simply use the extends syntax discussed in Chapter 9 to introduce the
proxy into the class’s prototype chain, like this:

function NoSuchProperty() {
 // empty
}

NoSuchProperty.prototype = new Proxy({}, {
 get(trapTarget, key, receiver) {
 throw new ReferenceError(`${key} doesn't exist`);
 }
});

280 Chapter 12

class Square extends NoSuchProperty {
 constructor(length, width) {
 super();
 this.length = length;
 this.width = width;
 }
}

let shape = new Square(2, 6);

let area1 = shape.length * shape.width;
console.log(area1); // 12

// throws an error because "wdth" doesn't exist
let area2 = shape.length * shape.wdth;

The Square class inherits from NoSuchProperty, so the proxy is in the
Square class’s prototype chain. The shape object is then created as a new
instance of Square and has two own properties: length and width. Reading
the values of those properties succeeds because the get proxy trap is
never called. Only when a property that doesn’t exist on shape is accessed
(shape.wdth, an obvious typo) does the get proxy trap trigger and throw an
error, proving that the proxy is in the prototype chain of shape. But it might
not be obvious that the proxy is not the direct prototype of shape. In fact,
the proxy is a couple of steps up the prototype chain from shape. You can
see this more clearly by slightly altering the preceding example:

function NoSuchProperty() {
 // empty
}

// store a reference to the proxy that will be the prototype
let proxy = new Proxy({}, {
 get(trapTarget, key, receiver) {
 throw new ReferenceError(`${key} doesn't exist`);
 }
});

NoSuchProperty.prototype = proxy;

class Square extends NoSuchProperty {
 constructor(length, width) {
 super();
 this.length = length;
 this.width = width;
 }
}

let shape = new Square(2, 6);

let shapeProto = Object.getPrototypeOf(shape);

Proxies and the Reflection API 281

console.log(shapeProto === proxy); // false

let secondLevelProto = Object.getPrototypeOf(shapeProto);

console.log(secondLevelProto === proxy); // true

This version of the code stores the proxy in a variable called proxy, mak-
ing it easier to identify later. The prototype of shape is Shape.prototype, which
is not a proxy. But the prototype of Shape.prototype is the proxy that was
inherited from NoSuchProperty.

The inheritance adds another step in the prototype chain, and that
matters because operations that might result in calling the get trap on proxy
need to go through one extra step before doing so. If there’s a property on
Shape.prototype, that will prevent the get proxy trap from being called, as in
this example:

function NoSuchProperty() {
 // empty
}

NoSuchProperty.prototype = new Proxy({}, {
 get(trapTarget, key, receiver) {
 throw new ReferenceError(`${key} doesn't exist`);
 }
});

class Square extends NoSuchProperty {
 constructor(length, width) {
 super();
 this.length = length;
 this.width = width;
 }

 getArea() {
 return this.length * this.width;
 }
}

let shape = new Square(2, 6);

let area1 = shape.length * shape.width;
console.log(area1); // 12

let area2 = shape.getArea();
console.log(area2); // 12

// throws an error because "wdth" doesn't exist
let area3 = shape.length * shape.wdth;

Here, the Square class has a getArea() method. The getArea() method is
automatically added to Square.prototype, so when shape.getArea() is called,
the search for the method getArea() starts on the shape instance and then

282 Chapter 12

proceeds to its prototype. Because getArea() is found on the prototype, the
search stops and the proxy is never called. That is actually the behavior you
want in this situation, because you wouldn’t want to incorrectly throw an
error when getArea() is called.

Even though it takes a bit of extra code to create a class with a proxy in
its prototype chain, it can be worth the effort if you need such functionality.

Summary
Prior to ECMAScript 6, certain objects (such as arrays) displayed non-
standard behavior that developers couldn’t replicate. Proxies change
that. They let you define your own nonstandard behavior for several low-
level JavaScript operations, so you can replicate all behaviors of built-in
JavaScript objects through proxy traps. These traps are called behind the
scenes when various operations take place, like the use of the in operator.

A reflection API was also introduced in ECMAScript 6 to allow develop-
ers to implement the default behavior for each proxy trap. Each proxy trap
has a corresponding method of the same name on the Reflect object, which
is another ECMAScript 6 addition. Using a combination of proxy traps and
reflection API methods, it’s possible to filter some operations to behave dif-
ferently only in certain conditions while defaulting to the built-in behavior.

Revocable proxies are special proxies that can be effectively disabled by
using a revoke() function. The revoke() function terminates all functionality
on the proxy, so any attempt to interact with the proxy’s properties throws
an error after revoke() is called. Revocable proxies are important for appli-
cation security where third-party developers may need access to certain
objects for a specified amount of time.

Although using proxies directly is the most powerful use case, you can
also use a proxy as the prototype for another object. In that case, you are
severely limited in the number of proxy traps you can effectively use. Only
the get, set, and has proxy traps will ever be called on a proxy when it’s used
as a prototype, resulting in fewer use cases.

13
E n c a p s u l a t i n g c o d E

w i t h M o d u l E s

JavaScript’s “shared everything” approach
to loading code is one of the most error-

prone and confusing aspects of the language.
Other languages use concepts such as packages

to define code scope, but before ECMAScript 6, every-
thing defined in every JavaScript file of an application
shared one global scope. As web applications became more complex and
started using even more JavaScript code, that approach caused problems,
such as naming collisions and security concerns. One goal of ECMAScript 6
was to solve the scope problem and bring some order to JavaScript applica-
tions. That’s where modules come in.

What Are Modules?
A module is JavaScript code that automatically runs in strict mode with no
way to opt out. Contrary to a shared-everything architecture, variables
created in the top level of a module aren’t automatically added to the

284 Chapter 13

shared global scope. The variables exist only within the top-level scope of
the module, and the module must export any elements, like variables or
functions, that should be available to code outside the module. Modules
may also import bindings from other modules.

Two other module features relate less to scope but are important
nonetheless. First, the value of this in the top level of a module is undefined.
Second, modules also don’t allow HTML-style comments within code, which
is a residual feature from JavaScript’s early browser days.

Scripts, which include any JavaScript code that isn’t a module, lack these
features. The differences between modules and other JavaScript code may
seem minor at first glance, but they represent a significant change in how
JavaScript code is loaded and evaluated, which I’ll discuss throughout this
chapter. The real power of modules is the ability to export and import only
bindings you need rather than everything in a file. A good understanding
of exporting and importing is fundamental to understanding how modules
differ from scripts.

Basic Exporting
You can use the export keyword to expose parts of published code to other
modules. In the simplest case, you can place export in front of any variable,
function, or class declaration to export it from the module, like this:

// export data
export var color = "red";
export let name = "Nicholas";
export const magicNumber = 7;

// export function
export function sum(num1, num2) {
 return num1 + num1;
}

// export class
export class Rectangle {
 constructor(length, width) {
 this.length = length;
 this.width = width;
 }
}

// this function is private to the module
function subtract(num1, num2) {
 return num1 - num2;
}

// define a function...
function multiply(num1, num2) {
 return num1 * num2;
}

Encapsulating Code with Modules 285

// ...and then export it later
export multiply;

There are a few details to notice in this example. Apart from the
export keyword, every declaration is the same as it would be in a script.
Each exported function or class also has a name, because exported func-
tion and class declarations require a name. You can’t export anonymous
functions or classes using this syntax unless you use the default keyword
(discussed in detail in “Default Values in Modules” on page 289).

Also, consider the multiply() function, which isn’t exported when it’s
defined. That works because you don’t always need to export a declara-
tion: you can also export references. Additionally, notice that this example
doesn’t export the subtract() function. That function won’t be accessible
from outside this module because any variables, functions, or classes that
are not explicitly exported remain private to the module.

Basic Importing
When you have a module with exports, you can access the functionality in
another module by using the import keyword. The two parts of an import
statement are the identifiers you’re importing and the module from which
those identifiers should be imported.

This is the statement’s basic form:

import { identifier1, identifier2 } from "./example.js";

The curly braces after import indicate the bindings to import from
a given module. The keyword from indicates the module from which to
import the given binding. The module is specified by a string representing
the path to the module (called the module specifier). Browsers use the same
path format you might pass to the <script> element, which means you must
include a file extension. Node.js, on the other hand, follows its convention
of differentiating between local files and packages based on a filesystem
prefix. For instance, example would be a package and ./example.js would be
a local file.

n o t E The list of bindings to import looks similar to a destructured object, but it isn’t one.

When you’re importing a binding from a module, the binding acts
as though it was defined using const. As a result, you can’t define another
variable with the same name (including importing another binding of the
same name), use the identifier before the import statement, or change bind-
ing’s value.

286 Chapter 13

Importing a Single Binding
Suppose that the example in “Basic Exporting” on page 284 is in a
module with the filename example.js. You can import and use bindings
from that module in a number of ways. For instance, you can just import
one identifier:

// import just one
import { sum } from "./example.js";

console.log(sum(1, 2)); // 3

sum = 1; // throws an error

Even though example.js exports more than just that one function, this
example imports only the sum() function. If you try to assign a new value to
sum, the result is an error because you can’t reassign imported bindings.

n o t E Be sure to include /, ./, or ../ at the beginning of the string representing the file
you’re importing for the best compatibility across browsers and Node.js.

Importing Multiple Bindings
If you want to import multiple bindings from the example module, you can
explicitly list them as follows:

// import multiple
import { sum, multiply, magicNumber } from "./example.js";
console.log(sum(1, magicNumber)); // 8
console.log(multiply(1, 2)); // 2

Here, three bindings are imported from the example module: sum,
multiply, and magicNumber. They are then used as though they were locally
defined.

Importing an Entire Module
A special case allows you to import the entire module as a single object. All
exports are then available on that object as properties. For example:

// import everything
import * as example from "./example.js";
console.log(example.sum(1,
 example.magicNumber)); // 8
console.log(example.multiply(1, 2)); // 2

In this code, all exported bindings in example.js are loaded into an
object called example. The named exports (the sum() function, the multiple()
function, and magicNumber) are then accessible as properties on example.

Encapsulating Code with Modules 287

This import format is called a namespace import because the example object
doesn’t exist inside the example.js file and is instead created to be used as a
namespace object for all the exported members of example.js.

However, keep in mind that no matter how many times you use a
module in import statements, the module will execute only once. After
the code to import the module executes, the instantiated module is kept
in memory and reused whenever another import statement references it.
Consider the following:

import { sum } from "./example.js";
import { multiply } from "./example.js";
import { magicNumber } from "./example.js";

Even though three import statements are in this module, example.js
will execute only once. If other modules in the same application were to
import bindings from example.js, those modules would use the same module
instance this code uses.

Modul E sy n ta x l iMi tat ions

An important limitation of both export and import is that they must be used
outside other statements and functions. For instance, this code will give a syn-
tax error:

if (flag) {
 export flag; // syntax error
}

The export statement is inside an if statement, which isn’t allowed.
Exports cannot be conditional or done dynamically in any way. One reason
module syntax exists is to let the JavaScript engine statically determine what
will be exported. As such, you can only use export at the top level of a
module.

Similarly, you can’t use import inside a statement; you can only use it at
the top-level. That means this code also gives a syntax error:

function tryImport() {
 import flag from "./example.js"; // syntax error
}

You can’t dynamically import bindings for the same reason you can’t
dynamically export bindings. The export and import keywords are designed
to be static so tools like text editors can easily identify what information is
available from a module.

288 Chapter 13

A Subtle Quirk of Imported Bindings
ECMAScript 6’s import statements create read-only bindings to variables,
functions, and classes rather than simply referencing the original bindings
like normal variables. Even though the module that imports the binding
can’t change the binding’s value, the module that exports that identifier
can. For example, suppose you want to use this module:

export var name = "Nicholas";
export function setName(newName) {
 name = newName;
}

When you import these two bindings, the setName() function can change
the value of name:

import { name, setName } from "./example.js";

console.log(name); // "Nicholas"
setName("Greg");
console.log(name); // "Greg"

name = "Nicholas"; // throws an error

The call to setName("Greg") goes back into the module from which
setName() was exported and executes there, setting name to "Greg" instead.
Note that this change is automatically reflected on the imported name bind-
ing. The reason is that name is the local name for the exported name identi-
fier. The name used in this code and the name used in the module being
imported from aren’t the same.

Renaming Exports and Imports
Sometimes, you may not want to use the original name of a variable, func-
tion, or class you’ve imported from a module. Fortunately, you can change
the name of an export during the export and during the import.

In the first case, suppose you have a function that you want to export
with a different name. You can use the as keyword to specify the name that
the function should be known as outside of the module:

function sum(num1, num2) {
 return num1 + num2;
}

export { sum as add };

Encapsulating Code with Modules 289

Here, the function with the local name sum() is exported using add() as
its exported name. That means when another module wants to import this
function, it will have to use the name add:

import { add } from "./example.js";

If the module importing the function wants to use a different name, it
can also use as:

import { add as sum } from "./example.js";
console.log(typeof add); // "undefined"
console.log(sum(1, 2)); // 3

This code imports the add() function using an import name to rename
the function sum() (the local name in this context). Changing the func-
tion’s local name on import means there is no identifier named add() in
this module, even though the module imports the add() function.

Default Values in Modules
The module syntax is optimized for exporting and importing default values
from modules, because this pattern was quite common in other module sys-
tems, such as CommonJS (another specification for using JavaScript outside
the browser). The default value for a module is a single variable, function, or
class as specified by the default keyword, and you can only set one default
export per module. Using the default keyword with multiple exports is a
syntax error.

Exporting Default Values
Here’s a simple example that uses the default keyword:

export default function(num1, num2) {
 return num1 + num2;
}

This module exports a function as its default value. The default key-
word indicates that this is a default export. The function doesn’t require a
name because the module represents the function.

You can also specify an identifier as the default export by placing it
after export default, like this:

function sum(num1, num2) {
 return num1 + num2;
}

export default sum;

290 Chapter 13

The sum() function is first defined and later exported as the default value
of the module. You might want to use this approach if the default value needs
to be calculated.

A third way to specify an identifier as the default export is by using the
renaming syntax as follows:

function sum(num1, num2) {
 return num1 + num2;
}

export { sum as default };

The identifier default has special meaning in a renaming export and
indicates a value should be the default for the module. Because default is a
keyword in JavaScript, you can’t use it for a variable, function, or class name;
however, you can use it as a property name. So using default to rename an
export is a special case to create consistency with how non-default exports
are defined. This syntax is useful if you want to use a single export statement
to specify multiple exports, including the default, simultaneously.

Importing Default Values
You can import a default value from a module using the following syntax:

// import the default
import sum from "./example.js";

console.log(sum(1, 2)); // 3

This import statement imports the default from the module example.js.
Note that no curly braces are used, unlike what you’d see in a non-default
import. The local name sum is used to represent whatever default func-
tion the module exports. This syntax is the cleanest, and the creators of
ECMAScript 6 expect it to be the dominant form of import on the web,
allowing you to use an already existing object.

For modules that export a default and one or more non-default bind-
ings, you can import all exported bindings using one statement. For instance,
suppose you have this module:

export let color = "red";

export default function(num1, num2) {
 return num1 + num2;
}

Encapsulating Code with Modules 291

You can import color and the default function using the following
import statement:

import sum, { color } from "./example.js";

console.log(sum(1, 2)); // 3
console.log(color); // "red"

The comma separates the default local name from the non-defaults,
which are also surrounded by curly braces. Keep in mind that the default
must come before the non-defaults in the import statement.

As with exporting defaults, you can import defaults with the renaming
syntax, too:

import { default as sum, color } from "./example.js";

console.log(sum(1, 2)); // 3
console.log(color); // "red"

In this code, the default export (default) is renamed to sum and the
additional color export is also imported. This example is otherwise equiva-
lent to the preceding example.

Re-exporting a Binding
Eventually, you may want to re-export something that your module has
imported. For instance, perhaps you’re creating a library from several small
modules. You can re-export an imported value using the patterns already
discussed in this chapter, as follows:

import { sum } from "./example.js";
export { sum }

Although that works, a single statement can also do the same task:

export { sum } from "./example.js";

This form of export looks into the specified module for the declaration
of sum and then exports it. Of course, you can also export a different name
for the same value:

export { sum as add } from "./example.js";

Here, sum is imported from example.js and then exported as add.

292 Chapter 13

If you want to export everything from another module, you can use
the * pattern:

export * from "./example.js";

By exporting everything, you’re including the default as well as any
named exports, which may affect what you can export from your module.
For instance, if example.js has a default export, you’d be unable to define a
new default export when using this syntax.

Importing Without Bindings
Some modules may not export anything; instead, they might only modify
objects in the global scope. Even though top-level variables, functions, and
classes inside modules don’t automatically end up in the global scope, that
doesn’t mean modules cannot access the global scope. The shared defini-
tions of built-in objects, such as Array and Object, are accessible inside a
module, and changes to those objects will be reflected in other modules.

For instance, if you want to add a pushAll() method to all arrays, you
might define a module like this:

// module code without exports or imports
Array.prototype.pushAll = function(items) {

 // items must be an array
 if (!Array.isArray(items)) {
 throw new TypeError("Argument must be an array.");
 }

 // use built-in push() and spread operator
 return this.push(...items);
};

This is a valid module, even though there are no exports or imports.
This code can be used as a module and as a script. Because it doesn’t export
anything, you can use a simplified import to execute the module code with-
out importing any bindings:

import "./example.js";

let colors = ["red", "green", "blue"];
let items = [];

items.pushAll(colors);

This code imports and executes the module containing the pushAll()
method, so pushAll() is added to the array prototype. That means pushAll()
is now available for use on all arrays inside this module.

n o t E Imports without bindings are most likely to be used to create polyfills and shims.

Encapsulating Code with Modules 293

Loading Modules
Although ECMAScript 6 defines the syntax for modules, it doesn’t define
how to load them. This is part of the complexity of a specification that’s
supposed to be agnostic to implementation environments. Rather than
trying to create a single specification that would work for all JavaScript
environments, ECMAScript 6 specifies only the syntax and abstracts
out the loading mechanism to an undefined internal operation called
HostResolveImportedModule. Web browser and Node.js developers are left to
decide how to implement HostResolveImportedModule in a way that makes
sense for their respective environments.

Using Modules in Web Browsers
Even before ECMAScript 6, web browsers had multiple ways of including
JavaScript in a web application. Those script loading options are:

•	 Loading JavaScript code files using the <script> element with the src
attribute specifying a location from which to load the code

•	 Embedding JavaScript code inline using the <script> element without
the src attribute

•	 Loading JavaScript code files to execute as workers (such as a web
worker or service worker)

To fully support modules, web browsers had to update each of these
mechanisms. These details are fully defined in the HTML specification,
and I’ll summarize them in the following sections.

Using Modules with <script>

The default behavior of the <script> element is to load JavaScript files
as scripts, not modules. This happens when the type attribute is missing
or when the type attribute contains a JavaScript content type (such as
"text/javascript"). The <script> element can then execute inline code or
load the file specified in src. To support modules, the "module" value was
added as a type option. Setting type to "module" tells the browser to load
any inline code or code contained in the file specified by src as a module
instead of a script. Here’s a simple example:

<!-- load a module JavaScript file -->
<script type="module" src="module.js"></script>

<!-- include a module inline -->
<script type="module">

import { sum } from "./example.js";

let result = sum(1, 2);

</script>

294 Chapter 13

The first <script> element in this example loads an external module
file using the src attribute. The only difference between this and loading
a script is that "module" is given as the type. The second <script> element
contains a module that is embedded directly in the web page. The variable
result is not exposed globally because it exists only within the module (as
defined by the <script> element) and is therefore not added to window as a
property.

As you can see, including modules in web pages is fairly simple and
similar to including scripts. However, there are some differences in how
modules are actually loaded.

n o t E You may have noticed that "module" is not a content type like the "text/javascript"
type. Module JavaScript files are served with the same content type as script JavaScript
files, so it’s not possible to differentiate between them solely based on content type. Also,
browsers ignore <script> elements when the type is unrecognized, so browsers that
don’t support modules will automatically ignore the <script type="module"> line,
providing good backward compatibility.

Module Loading Sequence in Web Browsers

Modules are unique in that, unlike scripts, they may use import to specify
that other files must be loaded to execute correctly. To support that func-
tionality, <script type="module"> always acts as though the defer attribute is
applied.

The defer attribute is optional for loading script files but is always
applied for loading module files. The module file begins downloading
as soon as the HTML parser encounters <script type="module"> with a src
attribute but doesn’t execute until after the document has been completely
parsed. Modules are also executed in the order in which they appear in
the HTML file. That means the first <script type="module"> is always guaran-
teed to execute before the second, even if one module contains inline code
instead of specifying src. For example:

<!-- this will execute first -->
<script type="module" src="module1.js"></script>

<!-- this will execute second -->
<script type="module">
import { sum } from "./example.js";

let result = sum(1, 2);
</script>

<!-- this will execute third -->
<script type="module" src="module2.js"></script>

These three <script> elements execute in the order they are specified,
so the module1.js module is guaranteed to execute before the inline module,
and the inline module is guaranteed to execute before the module2.js module.

Encapsulating Code with Modules 295

Each module can import from one or more other modules, which com-
plicates matters. For that reason, modules are parsed completely first to
identify all import statements. Each import statement then triggers a fetch
(either from the network or from the cache), and no module is executed
until all import resources have been loaded and executed.

All modules, those explicitly included using <script type="module"> and
those implicitly included using import, are loaded and executed in order. In
this example, the complete loading sequence is as follows:

1. Download and parse module1.js.

2. Recursively download and parse import resources in module1.js.

3. Parse the inline module.

4. Recursively download and parse import resources in the inline module.

5. Download and parse module2.js.

6. Recursively download and parse import resources in module2.js.

When loading is complete, nothing is executed until after the docu-
ment has been completely parsed. After document parsing is completed,
the following actions happen:

1. Recursively execute import resources for module1.js.

2. Execute module1.js.

3. Recursively execute import resources for the inline module.

4. Execute the inline module.

5. Recursively execute import resources for module2.js.

6. Execute module2.js.

Notice that the inline module acts like the other two modules except
the code doesn’t have to be downloaded first. Otherwise, the sequence of
loading import resources and executing modules is the same.

n o t E The defer attribute is ignored on <script type="module"> because it already behaves
as though defer is applied.

Asynchronous Module Loading in Web Browsers

You may already be familiar with the async attribute on the <script> element.
When used with scripts, async causes the script file to be executed as soon as
the file is completely downloaded and parsed. However, the order of async
scripts in the document doesn’t affect the order in which the scripts are
executed. The scripts are always executed as soon as they finish download-
ing without waiting for the containing document to finish parsing.

The async attribute can be applied to modules as well. Using async on
<script type="module"> causes the module to execute in a manner similar to
a script. The only difference is that all import resources for the module are
downloaded before the module is executed. That guarantees all resources

296 Chapter 13

the module needs to function will be downloaded before the module exe-
cutes; you just can’t guarantee when the module will execute. Consider the
following code:

<!-- no guarantee which one of these will execute first -->
<script type="module" async src="module1.js"></script>
<script type="module" async src="module2.js"></script>

In this example, two module files are loaded asynchronously. It’s
impossible to determine which module will execute first simply by look-
ing at this code. If module1.js finishes downloading first (including all of
its import resources), it will execute first. If module2.js finishes downloading
first, it will execute first instead.

Loading Modules as Workers

Workers, such as web workers and service workers, execute JavaScript code
outside of the web page context. Creating a new worker involves creating
a new instance Worker (or another class) and passing in the location of the
JavaScript file. The default loading mechanism is to load files as scripts,
like this:

// load script.js as a script
let worker = new Worker("script.js");

To support loading modules, the developers of the HTML standard
added a second argument to these constructors. The second argument is
an object with a type property with a default value of "script". You can set
type to "module" to load module files:

// load module.js as a module
let worker = new Worker("module.js", { type: "module" });

This example loads module.js as a module instead of a script by passing a
second argument with "module" as the type property’s value. (The type prop-
erty is meant to mimic how the type attribute of <script> differentiates mod-
ules and scripts.) The second argument is supported for all worker types in
the browser.

Worker modules are generally the same as worker scripts, but there
are a couple of exceptions. First, worker scripts can only be loaded from
the same origin as the web page in which they’re referenced, but worker
modules aren’t quite as limited. Although worker modules have the
same default restriction, they can also load files that have appropriate
Cross-Origin Resource Sharing (CORS) headers to allow access. Second,
although a worker script can use the self.importScripts() method to load
additional scripts into the worker, self.importScripts() always fails on
worker modules because you should use import instead.

Encapsulating Code with Modules 297

Browser Module Specifier Resolution
All examples to this point in the chapter have used a relative path (as in the
string "./example.js") for the module specifier. Browsers require module
specifiers to be in one of the following formats:

•	 Begin with / to resolve from the root directory

•	 Begin with ./ to resolve from the current directory

•	 Begin with ../ to resolve from the parent directory

•	 URL format

For example, suppose you have a module file located at https://www
.example.com/modules/module.js that contains the following code:

// imports from https://www.example.com/modules/example1.js
import { first } from "./example1.js";

// imports from https://www.example.com/example2.js
import { second } from "../example2.js";

// imports from https://www.example.com/example3.js
import { third } from "/example3.js";

// imports from https://www2.example.com/example4.js
import { fourth } from "https://www2.example.com/example4.js";

Each module specifier in this example is valid for use in a browser,
including the complete URL in the final line. (You’d just need to be sure
www2.example.com has properly configured its CORS headers to allow cross-
domain loading.) These are the only module specifier formats that browsers
can resolve by default, though the not-yet-complete module loader specifica-
tion will provide ways to resolve other formats.

Until then, some normal-looking module specifiers are actually invalid
in browsers and will result in an error, such as:

// invalid - doesn't begin with /, ./, or ../
import { first } from "example.js";

// invalid - doesn't begin with /, ./, or ../
import { second } from "example/index.js";

Each of these module specifiers cannot be loaded by a browser. The two
module specifiers are in an invalid format (missing the correct beginning
characters), even though both will work when used as the value of src in a
<script> tag. This is an intentional difference in behavior between <script>
and import.

298 Chapter 13

Summary
ECMAScript 6 adds modules to the language as a way to package and
encapsulate functionality. Modules behave differently than scripts in that
they don’t modify the global scope with their top-level variables, functions,
and classes, and this is undefined. To achieve that behavior, modules are
loaded using a different mode.

You must export any functionality you want to make available to con-
sumers of a module. Variables, functions, and classes can all be exported,
and there is also one default export allowed per module. After exporting,
another module can import all or some of the exported names. These
names act as though they were defined by let and operate as block bind-
ings that can’t be redeclared in the same module.

Modules don’t need to export anything if they’re manipulating some-
thing in the global scope. You can actually import from such a module with-
out introducing any bindings into the module scope.

Because modules must run in a different mode, browsers introduced
<script type="module"> to signal that the source file or inline code should be
executed as a module. Module files loaded with <script type="module"> are
loaded as though the defer attribute is applied to them. Modules are also
executed in the order in which they appear in the containing document
after the document is fully parsed.

A
M i n o r C h a n g e s i n

e C M a s C r i p t 6

In addition to the major changes covered
in this book, ECMAScript 6 incorporates

several other smaller changes that are help-
ful in improving JavaScript. Those changes

include making integers easier to use, adding new
methods for calculations, tweaking Unicode identi-
fiers, and formalizing the __proto__ property, all of
which I describe in this appendix.

Working with Integers
JavaScript uses the IEEE 754 encoding system to represent integers and
floats, which has caused much confusion over the years. The language takes
great pains to ensure that developers don’t need to be concerned about the

300 Appendix A

details of number encoding, but problems still occur from time to time.
ECMAScript 6 addresses these problems by making integers easier to iden-
tify and work with.

Identifying Integers
ECMAScript 6 added the Number.isInteger() method, which can determine
whether a value represents an integer in JavaScript. Although JavaScript
uses IEEE 754 to represent both types of numbers, floats and integers are
stored differently. The Number.isInteger() method takes advantage of that
storage difference, and when the method is called on a value, the JavaScript
engine looks at the underlying representation of the value to determine
whether that value is an integer. As a result, numbers that look like floats
might actually be stored as integers and cause Number.isInteger() to return
true. For example:

console.log(Number.isInteger(25)); // true
console.log(Number.isInteger(25.0)); // true
console.log(Number.isInteger(25.1)); // false

In this code, Number.isInteger() returns true for both 25 and 25.0, even
though the latter looks like a float. Simply adding a decimal point to a num-
ber doesn’t automatically make it a float in JavaScript. Because 25.0 is really
just 25, it is stored as an integer. However, the number 25.1 is stored as a
float because there is a fraction value.

Safe Integers
IEEE 754 can only accurately represent integers between −253 and 253, and
outside this “safe” range, binary representations are reused for multiple
numeric values. That means JavaScript can only safely represent integers
within the IEEE 754 range before problems become apparent. For instance,
consider this code:

console.log(Math.pow(2, 53)); // 9007199254740992
console.log(Math.pow(2, 53) + 1); // 9007199254740992

This example doesn’t contain a typo, yet two different numbers are rep-
resented by the same JavaScript integer. The effect becomes more prevalent
the further the value is outside the safe range.

ECMAScript 6 introduced the Number.isSafeInteger() method to better
identify integers that the language can accurately represent. It also added
the Number.MAX_SAFE_INTEGER and Number.MIN_SAFE_INTEGER properties to rep-
resent the upper and lower bounds of the integer range, respectively. The
Number.isSafeInteger() method ensures that a value is an integer and falls
within the safe range of integer values, as in this example:

var inside = Number.MAX_SAFE_INTEGER,
 outside = inside + 1;

Minor Changes in ECMAScript 6 301

console.log(Number.isInteger(inside)); // true
console.log(Number.isSafeInteger(inside)); // true

console.log(Number.isInteger(outside)); // true
console.log(Number.isSafeInteger(outside)); // false

The number inside is the largest safe integer, so it causes the methods
Number.isInteger() and Number.isSafeInteger() to return true. The number
outside is the first questionable integer value, and it isn’t considered safe,
even though it’s still an integer.

Most of the time, you only want to deal with safe integers when you’re
doing integer arithmetic or comparisons in JavaScript; therefore, using
Number.isSafeInteger() as part of input validation is a good idea.

New Math Methods
The new emphasis on gaming and graphics that led ECMAScript 6
to include typed arrays in JavaScript also led to the realization that a
JavaScript engine could do many mathematical calculations more effi-
ciently. But optimization strategies like asm.js, which works on a subset of
JavaScript to improve performance, need more information to perform
calculations in the fastest way possible. For instance, knowing whether the
numbers should be treated as 32-bit integers or as 64-bit floats is important
for hardware-based operations, which are much faster than software-based
operations.

As a result, ECMAScript 6 added several methods to the Math object to
improve the speed of common mathematical calculations. Improving the
speed of common calculations also improves the overall speed of applica-
tions that perform many calculations, such as those in graphics programs.
Table A-1 shows the new methods.

Table A-1: Math Object Methods in ECMAScript 6

Method Returns

Math.acosh(x) The inverse hyperbolic cosine of x
Math.asinh(x) The inverse hyperbolic sine of x
Math.atanh(x) The inverse hyperbolic tangent of x
Math.cbrt(x) The cubed root of x
Math.clz32(x) The number of leading zero bits in the 32-bit integer

representation of x
Math.cosh(x) The hyperbolic cosine of x
Math.expm1(x) The result of subtracting 1 from the exponential function of x
Math.fround(x) The nearest single-precision float of x
Math.hypot(...values) The square root of the sum of the squares of each argument

(continued)

302 Appendix A

Method Returns

Math.imul(x, y) The result of performing true 32-bit multiplication of the two
arguments

Math.log1p(x) The natural logarithm of 1 + x
Math.log2(x) The base 2 logarithm of x
Math.log10(x) The base 10 logarithm of x
Math.sign(x) −1 if x is negative, 0 if x is +0 or −0, or 1 if x is positive
Math.sinh(x) The hyperbolic sine of x
Math.tanh(x) The hyperbolic tangent of x
Math.trunc(x) An integer (removes fraction digits from a float)

Explaining each new method and what it does in detail is beyond the
scope of this book. But if your application needs to do a reasonably com-
mon calculation, be sure to check the new Math methods before implement-
ing it yourself.

Unicode Identifiers
ECMAScript 6 offers better Unicode support than earlier versions of
JavaScript, and it also changes which characters you can use as identifiers.
In ECMAScript 5, it was possible to use Unicode escape sequences for iden-
tifiers. For example:

// valid in ECMAScript 5 and 6
var \u0061 = "abc";

console.log(\u0061); // "abc"

// equivalent to:
console.log(a); // "abc"

After the var statement in this example, you can use either \u0061 or a to
access the variable. In ECMAScript 6, you can also use Unicode code point
escape sequences as identifiers, like this:

// valid in ECMAScript 5 and 6
var \u{61} = "abc";

console.log(\u{61}); // "abc"

// equivalent to:
console.log(a); // "abc"

This example just replaces \u0061 with its code point equivalent. Other-
wise, the code does the same thing as the previous example.

Table A-1: (continued)

Minor Changes in ECMAScript 6 303

Additionally, ECMAScript 6 formally specifies valid identifiers in terms
of Unicode Standard Annex #31, “Unicode Identifier and Pattern Syntax”
(http://unicode.org/reports/tr31/), which includes the following rules:

•	 The first character must be $, _, or any Unicode symbol with a derived
core property of ID_Start.

•	 Each subsequent character must be $, _, \u200c (a zero-width non-
joiner), \u200d (a zero-width joiner), or any Unicode symbol with a
derived core property of ID_Continue.

The ID_Start and ID_Continue derived core properties are defined in
“Unicode Identifier and Pattern Syntax” as a way to identify symbols that
are appropriate for use in identifiers, such as variables and domain names.
The specification is not specific to JavaScript.

Formalizing the __proto__ Property
Even before ECMAScript 5 was completed, several JavaScript engines
already implemented a custom property called __proto__ that could be
used to get and set the [[Prototype]] property. Effectively, __proto__ was an
early precursor to the Object.getPrototypeOf() and Object.setPrototypeOf()
methods. Expecting all JavaScript engines to remove this property was
unrealistic (multiple popular JavaScript libraries used __proto__), so
ECMAScript 6 also formalized the __proto__ behavior. But the formaliza-
tion appears in Appendix B of ECMA-262 along with this warning:

These features are not considered part of the core ECMAScript
language. Programmers should not use or assume the existence
of these features and behaviours when writing new ECMAScript
code. ECMAScript implementations are discouraged from imple-
menting these features unless the implementation is part of a web
browser or is required to run the same legacy ECMAScript code
that web browsers encounter.

The ECMAScript specification recommends using Object.getPrototypeOf()
and Object.setPrototypeOf() instead because __proto__ has the following
characteristics:

•	 You can only specify __proto__ once in an object literal. If you specify
two __proto__ properties, an error is thrown. This is the only object lit-
eral property with that restriction.

•	 The computed form ["__proto__"] acts like a regular property and
doesn’t set or return the current object’s prototype. All rules related
to object literal properties apply in this form, as opposed to the non-
computed form, which has exceptions.

Although you should avoid using the __proto__ property, the way
the specification defines that property is noteworthy. In ECMAScript 6
engines, Object.prototype.__proto__ is defined as an accessor property whose

304 Appendix A

get method calls Object.getPrototypeOf() and whose set method calls the
Object.setPrototypeOf() method. Therefore, the only real difference between
using __proto__ and the Object.getPrototypeOf() or Object.setPrototypeOf()
methods is that __proto__ allows you to set the prototype of an object literal
directly. Here’s how that works:

let person = {
 getGreeting() {
 return "Hello";
 }
};

let dog = {
 getGreeting() {
 return "Woof";
 }
};

// prototype is person
let friend = {
 __proto__: person
};
console.log(friend.getGreeting()); // "Hello"
console.log(Object.getPrototypeOf(friend) === person); // true
console.log(friend.__proto__ === person); // true

// set prototype to dog
friend.__proto__ = dog;
console.log(friend.getGreeting()); // "Woof"
console.log(friend.__proto__ === dog); // true
console.log(Object.getPrototypeOf(friend) === dog); // true

Instead of calling Object.create() to make the friend object, this example
creates a standard object literal that assigns a value to the __proto__ property.
On the other hand, when you’re creating an object with the Object.create()
method, you must specify full property descriptors for any additional object
properties.

B
U n d e r s t a n d i n g e C M a s C r i p t 7

(2 0 1 6)

The development of ECMAScript 6 took
about four years, and after that, TC-39

decided that such a long development pro-
cess was unsustainable. Instead, it moved to a

yearly release cycle to ensure new language features
would make it into development sooner.

More frequent releases mean that each new edition of ECMAScript
should have fewer new features than ECMAScript 6. To signify this change,
new versions of the specification no longer prominently feature the edition
number and instead refer to the year in which the specification was pub-
lished. As a result, ECMAScript 6 is also known as ECMAScript 2015, and
ECMAScript 7 is formally known as ECMAScript 2016. TC-39 expects to use
the year-based naming system for all future ECMAScript editions.

ECMAScript 2016 was finalized in March 2016 and contained only
three additions to the language: a new mathematical operator, a new array
method, and a new syntax error. All three are covered in this appendix.

306 Appendix B

The Exponentiation Operator
The only change to JavaScript syntax introduced in ECMAScript 2016 is
the exponentiation operator, which is a mathematical operation that applies
an exponent to a base. JavaScript already had the Math.pow() method to per-
form exponentiation, but JavaScript was also one of the only languages that
required a method rather than a formal operator. In addition, some devel-
opers argue the operator is easier to read and reason about.

The exponentiation operator is two asterisks (**): the left operand is
the base, and the right operand is the exponent. For example:

let result = 5 ** 2;

console.log(result); // 25
console.log(result === Math.pow(5, 2)); // true

This example calculates 52, which is equal to 25. You can still use
Math.pow() to achieve the same result.

Order of Operations
The exponentiation operator has the highest precedence of all binary oper-
ators in JavaScript (unary operators have higher precedence than **). That
means it is applied first to any compound operation, as in this example:

let result = 2 * 5 ** 2;
console.log(result); // 50

The calculation of 52 happens first. The resulting value is then multi-
plied by 2 for a final result of 50.

Operand Restriction
The exponentiation operator does have a somewhat unusual restriction
that other operators lack. The left side of an exponentiation operation can-
not be a unary expression other than ++ or --. For example, this code uses
invalid syntax:

// syntax error
let result = -5 ** 2;

The -5 in this example is a syntax error because the order of operations
is ambiguous. Does the - apply just to 5 or the result of the 5 ** 2 expres-
sion? Disallowing unary expressions on the left side of the exponentiation
operator eliminates that ambiguity. To clearly specify intent, you need to
include parentheses either around -5 or around 5 ** 2 as follows:

// okay
let result1 = -(5 ** 2); // equal to -25

Understanding ECMAScript 7 (2016) 307

// also okay
let result2 = (-5) ** 2; // equal to 25

If you put the parentheses around the expression, the - is applied to the
entire expression. Surrounding -5 with parentheses makes it clear that you
want to raise –5 to the second power.

You don’t need parentheses to use ++ and -- on the left side of the expo-
nentiation operator because both operators have clearly defined behavior
on their operands. A prefix ++ or -- changes the operand before any other
operations take place, and the postfix versions don’t apply any changes until
after the entire expression has been evaluated. Both use cases are safe on
the left side of the operator in the following code:

let num1 = 2,
 num2 = 2;

console.log(++num1 ** 2); // 9
console.log(num1); // 3

console.log(num2-- ** 2); // 4
console.log(num2); // 1

In this example, num1 is incremented before the exponentiation opera-
tor is applied, so num1 becomes 3 and the result of the operation is 9. For
num2, the value remains 2 for the exponentiation operation and then is
decremented to 1.

The Array.prototype.includes() Method
You might recall that ECMAScript 6 added String.prototype.includes() to
check whether certain substrings exist within a given string. Originally,
ECMAScript 6 was also going to introduce an Array.prototype.includes()
method to continue the trend of treating strings and arrays similarly.
But the specification for Array.prototype.includes() was incomplete by
the ECMAScript 6 deadline, so Array.prototype.includes() ended up in
ECMAScript 2016 instead.

How to Use Array.prototype.includes()
The Array.prototype.includes() method accepts two arguments: the value to
search for and an optional index from which to start the search. When the
second argument is provided, includes() starts the match from that index.
(The default starting index is 0.) The return value is true if the value is
found inside the array and false if not. For example:

let values = [1, 2, 3];

console.log(values.includes(1)); // true
console.log(values.includes(0)); // false

308 Appendix B

// start the search from index 2
console.log(values.includes(1, 2)); // false

Here, calling values.includes() returns true for the value of 1 and false
for the value of 0 because 0 isn’t in the array. When the second argument
is used to start the search at index 2 (which contains the value 3), the
values.includes() method returns false because 1 is not between index 2
and the end of the array.

Value Comparison
The value comparison performed by the includes() method uses the ===
operator with one exception: NaN is considered equal to NaN even though
NaN === NaN evaluates to false. This is different than the behavior of the
indexOf() method, which strictly uses === for comparison. To see the differ-
ence, consider this code:

let values = [1, NaN, 2];

console.log(values.indexOf(NaN)); // -1
console.log(values.includes(NaN)); // true

The values.indexOf() method returns –1 for NaN even though NaN is con-
tained in the values array. On the other hand, values.includes() returns true
for NaN because it uses a different value comparison operator.

When you just want to check for the existence of a value in an array and
don’t need to know the index, I recommend using includes() because of the
difference in how NaN is treated by the includes() and indexOf() methods. If
you do need to know where in the array a value exists, you have to use the
indexOf() method.

Another quirk of this implementation is that +0 and −0 are considered
equal. In this case, the behavior of indexOf() and includes() is the same:

let values = [1, +0, 2];

console.log(values.indexOf(-0)); // 1
console.log(values.includes(-0)); // true

Here, both indexOf() and includes() find +0 when −0 is passed because the
two values are considered equal. Note that this is different than the behavior
of the Object.is() method, which considers +0 and −0 to be different values.

A Change to Function-Scoped Strict Mode
When strict mode was introduced in ECMAScript 5, the language was quite a
bit simpler than it became in ECMAScript 6, but ECMAScript 6 still allowed
you to specify strict mode using the "use strict" directive. When the direc-
tive was used in the global scope, all code would run in strict mode; using
the directive in a function scope caused the function to run only in strict

Understanding ECMAScript 7 (2016) 309

mode. The latter was a problem in ECMAScript 6 because parameters could
be defined in more complex ways—specifically, through destructuring and
default parameter values.

To understand the problem, consider the following code:

function doSomething(first = this) {
 "use strict";
 return first;
}

Here, the named parameter first is assigned a default value of this. You
might expect the value of first to be undefined because the ECMAScript 6
specification instructed JavaScript engines to treat the parameters as being
run in strict mode in cases like this. But implementing parameters running
in strict mode when "use strict" is present inside the function was quite dif-
ficult because parameter default values can be functions as well. This diffi-
culty led most JavaScript engines to not implement this feature and instead
leave this equal to the global object.

This implementation difficulty is why ECMAScript 2016 makes using a
"use strict" directive inside a function whose parameters are either destruc-
tured or have default values illegal. Only simple parameter lists, those that
don’t contain destructuring or default values, are allowed when "use strict"
is present in the body of a function. For reference, here are some legal and
illegal uses of the directive:

// okay - uses simple parameter list
function okay(first, second) {
 "use strict";
 return first;
}

// syntax error
function notOkay1(first, second=first) {
 "use strict";
 return first;
}

// syntax error
function notOkay2({ first, second }) {
 "use strict";
 return first;
}

You can still use "use strict" with simple parameter lists, which is
why okay() works as you would expect (that is, the same way it would in
ECMAScript 5). The notOkay1() function is a syntax error because you can
no longer use "use strict" in functions with default parameter values in
ECMAScript 2016. Similarly, the notOkay2() function is a syntax error because
you can’t use "use strict" in a function with destructured parameters.

Overall, this change removes a point of confusion for JavaScript devel-
opers and an implementation problem for JavaScript engines.

Symbols
* (asterisk), 139–142, 157, 159, 175
** (exponentiation operator), 306–307
\ (backslash), 26
` (backtick), 26
: (colon), 69, 88
{} (curly braces), 56–57, 88–89, 285
${ } (substitution delimiters), 28–29
... (rest items), 92–93
... (rest parameters), 44–46
... (spread operator), 47–48

converting sets to arrays, 126
nonarray iterables and, 151–152

= (equal sign), 87
== (equals operator), 72
=== (identically equals operator), 72
|| (logical OR operator), 36
[] (square brackets), 70–71

A
accessor properties, 74, 173–174
add() method, 40–42

for sets, 122–123
for weak sets, 127–128

apply() method, 47–48, 51, 61
apply trap, 245, 262–265, 268
arguments object

arrow functions and, 55, 60
effect of default parameter

values on, 38–39
effect of rest parameters on, 45–46

ArrayBuffer constructor, 200
array buffers, 199–206

creating, 199–200
manipulating with views, 200–206

reading and writing data,
202–203

retrieving view infor ma tion, 201
type-specific views, 203–206

Array constructor, 191–192
Array.from() method, 193–196

mapping conversion, 194–195
using on iterables, 195–196

Array.isArray() method, 209
Array.of() method, 192–193
Array.prototype.includes() method,

307–308
arrays, 191–212

arrow functions and, 60
converting sets to, 126
creating, 191–195

Array.from() method, 193–196
Array.of() method, 192–193

creating objects that behave as, 244,
269–275

deleting elements when
reducing length, 272–273

detecting array indexes, 270
implementing MyArray class,

273–275
increasing length when adding

new elements, 270–271
destructuring for, 90–93

default values, 92
destructuring assignment,

90–92
mixed with object

destructuring, 93–94
nested array destructuring, 92
rest items, 92–93

methods for, 196–198
copyWithin() method, 197–198
fill() method, 197
findIndex() method, 196–197
find() method, 196–197

typed, 198–206
array buffers, 199–206
element size, 206
numeric data types, 199
regular arrays versus, 207–211
views, 200–206

arrow functions, 54–61
arguments binding, 60
arrays and, 60
compared to other functions,

54–55
identifying, 61

I n d e x

312 Index

arrow functions, continued
immediately invoked function

expressions, 57–58
syntax for, 55–57
this binding, 58–60

assignments, destructuring
arrays, 90–92
objects, 85–86

asterisk (*), 139–142, 157, 159, 175
asynchronous module loading,

295–296
asynchronous programming, 213–216.

See also promises
callbacks, 215–216
events, 214–215

asynchronous task running, 159–164,
237–240

asynchronous task runner example,
161–164

await syntax, 240
simple task runner example,

159–160
task running with data, 160–161

await syntax, 240

B
backslash (\), 26
backtick (`), 26
Basic Multilingual Plane (BMP), 14, 16
bind() method, 49
block bindings, 1–12

declarations, 2–7
const declarations, 4–6
let declarations, 3–4
redeclaration, 4
temporal dead zone, 6–7
var declarations, 2–3

emerging best practices for, 12
global, 11–12
hoisting, 2–3
in loops, 7–11

const declarations, 10–11
functions, 8
let declarations, 9–10

block-level functions, 52–54
in non-strict mode, 54
when to use, 53

block scopes (lexical scopes), 3
BMP (Basic Multilingual Plane), 14, 16
buffer property, 201, 205

built-in iterators, 145–151
collection iterators, 145–149

default for collection types,
148–149

entries() iterator, 146
keys() iterator, 147–148
values() iterator, 146–147

NodeList iterators, 151
string iterators, 149–150

built-in objects, 68
byteLength property, 201, 205
byteOffset property, 201, 205
BYTES_PER_ELEMENT property, 206

C
callbacks, 215–216
call() function, 61
[[Call]] method, 50–51
canonical equivalence, 16
catch() method, 218–219, 221, 225,

228–229, 239–240
charAt() method, 13–14
charCodeAt() method, 13–15
checkArgs() method, 46
classes, 165–190

accessor properties, 173–174
class constructors

callable, 267–268
new.target in, 188–189
overriding abstract, 266–267

class declarations, 166–169
basic, 166–167
syntax for, 167–169

class expressions, 169–171
basic, 169–170
named, 170–171

class-like structures in
ECMAScript 5, 166

computed member names, 174–175
constant class names, 169
derived, 178–188

from expressions, 181–183
inherited static members, 181
inheriting from built-ins,

184–185
shadowing class methods,

180–181
Symbol.species property, 185–188

as first-class citizens, 172–173
generator methods, 175–176

Index 313

static members, 176–177, 181
using proxies as prototypes on,

279–282
class keyword, 166
clear() method

for maps, 130
for sets, 123–124

clone() method, 186–187
codePointAt() method, 15–16
code points, 14–15
code units, 13–14
collection iterators, 145–149

default for collection types, 148–149
entries() iterator, 146
keys() iterator, 147–148
values() iterator, 146–147

colon (:), 69, 88
computed member names, 174–175
computed property names, 70–71
concat() method, 93, 107–108, 210–211
concise method syntax, 69–70
console.log() method, 61, 103
const declarations, 4–5

in global scope, 11
let declarations versus, 5
in loops, 10–11
for objects, 6
temporal dead zone, 6
using by default, 11

[[Construct]] method, 50–51
constructors, 50–52
construct trap, 245, 262–267
copyWithin() method, 197–198, 207
CORS (Cross-Origin Resource

Sharing), 296
count variable, 4
createIterator() function, 139–142
create() method, 181
Crockford, Douglas, 113
Cross-Origin Resource Sharing

(CORS), 296
curly braces ({}), 56–57, 88–89, 285

D
DataView type, 200–201
default keyword, 289–290
default parameter values, 36–43

default parameter expressions,
40–41

for destructured parameters, 96–97

in ECMAScript 5, 36
in ECMAScript 6, 37–38
effect on arguments object, 38–39
object destructuring, 86–87
temporal dead zone, 41–43

defineProperty trap, 245, 257–261
delete() method

for maps, 130
for sets, 123–124
for weak maps, 133–134
for weak sets, 127–128

delete operator, 250
deleteProperty trap, 245, 250–252
derived classes, 178–188

from expressions, 181–183
inherited static members, 181
inheriting from built-ins, 184–185
shadowing class methods, 180–181
Symbol.species property, 185–188

destructuring, 83–97
for arrays, 90–93

default values, 92
destructuring assignment,

90–92
nested array destructuring, 92
rest items, 92–93

for-of loops and, 149
initializers and, 85
mixed, 93–94
for objects, 84–89

assigning to different local
variable names, 87–88

default values, 86–87
destructuring assignment,

85–86
nested object destructuring,

88–89
for parameters, 94–97

default values, 96–97
required, 95–96

usefulness of, 84
domain-specific languages (DSLs), 25

E
ECMAScript 2016 (ECMAScript 7), 305

Array.prototype.includes() method,
307–308

exponentiation operator, 306–307
function-scoped strict mode,

308–309

314 Index

endsWith() method, 19–20
entries() iterator, 145–146, 148,

207–208
enumerate trap, 245
equal sign (=), 87
equals operator (==), 72
error-first callback style, 215
events, 214–215
exec() method, 23
exotic objects, 68
exponentiation operator (**), 306–307
exporting to modules, 284–285

re-exporting bindings, 291–292
renaming exports, 288–289

export keyword, 284–285
extends keyword, 178

F
factorial() method, 64
failure() method, 236–237
fill() method, 197–198, 207
filter() method, 207
findIndex() method, 196–197, 207
find() method, 196–197, 207
first-class citizens, classes as, 172–173
flags property, 24–25
Float32Array constructor, 204
Float64Array constructor, 204
forEach() method, 207

for maps, 131–132
for sets, 124–126

for-in loops
const declarations in, 10–11
let declarations in, 9–10
own property enumeration

order, 76
for loops, 7–9

const declarations in, 10
let declarations in, 9–10
var declarations in, 7–8

for-of loops
const declarations in, 10–11
destructuring and, 149
iterables and, 142–145

accessing default iterator,
143–144

creating iterables, 144–145
let declarations in, 9–10

from() method, 208–209
func() method, 63
Function constructor, 46–47

functions, 35–65. See also names of
specific functions

arrow, 54–61
arguments binding, 60
arrays and, 60
compared to other functions,

54–55
identifying, 61
immediately invoked function

expressions, 57–58
syntax for, 55–57
this binding, 58–60

block-level, 52–54
in non-strict mode, 54
when to use, 53

constructors, 50–52
with default parameter values,

36–43
default parameter expressions,

40–41
in ECMAScript 5, 36
in ECMAScript 6, 37–38
effect on arguments object, 38–39
temporal dead zone, 41–43

Function constructor, 46–47
in loops, 8
name property, 48–49
spread operator, 47–48
tail call optimization, 61–64

in ECMAScript 6, 62–63
making use of, 63–64

unnamed parameters, 43–46
in ECMAScript 5, 43–44
rest parameters, 44–46

G
generators, 139–142, 155–164

asynchronous task running,
159–164

asynchronous task runner
example, 161–164

simple task runner example,
159–160

task running with data, 160–161
delegating, 156–159
function expressions for, 141
loops and complexity, 138
methods for, 175–176
object methods for, 142
return statements, 155–156

getFloat32() method, 202

Index 315

getFloat64() method, 202
getInt8() method, 202–203
getInt16() method, 203
get() method

for maps, 129
for weak maps, 132–134

getOwnPropertyDescriptor trap, 245,
257–261

getPrototypeOf trap, 245, 252–254
get trap, 245

object shape validation using,
247–249

using on prototypes, 276–277
getUint8() method, 202
getValue() function, 2–3, 40–41
g flag, 22, 24
global block bindings, 11–12

H
handlers, 245
has() method

for maps, 130
for sets, 123
for weak maps, 133–134
for weak sets, 127–128

has trap, 245
hiding property existence using,

249–250
using on prototypes, 278–279

hoisting, 2–3, 53
[[HomeObject]] property, 80–81
HTML escaping, 25

I
identically equals operator (===), 72
i flag, 24
if statements, 121–122
immediately invoked function

expressions (IIFEs), 8–9,
57–58, 135, 168

importing modules, 285–288
entire module, 286–287
multiple bindings, 286
quirk of imported bindings, 288
renaming imports, 288–289
single binding, 286
without bindings, 292

import keyword, 285
includes() method, 19–20, 307–308
indentLevel variable, 21

indexOf() method, 19–20, 196–197, 207
inheritance. See derived classes
initializers, destructuring and, 85
init() method, 58–60
in operator, 122
instanceof, 50
Int8Array constructor, 204–205
Int16Array constructor, 204–207
Int32Array constructor, 204, 206
integers, 299–301
isExtensible trap, 245, 255–257
iterables, 142

creating typed arrays, 205
for-of loops and, 142–145

accessing default iterator,
143–144

creating iterables, 144–145
spread operator and nonarray,

151–152
using Array.from() method on,

195–196
iterators, 137–139, 142–155, 159–164

asynchronous task running,
159–164

asynchronous task runner
example, 161–164

simple task runner example,
159–160

task running with data, 160–161
built-in, 145–151

collection iterators, 145–149
NodeList iterators, 151
string iterators, 149–150

for-of loops and iterables, 142–145
accessing default iterator,

143–144
creating iterables, 144–145

loops and complexity, 138
passing arguments to, 152–154
spread operator and nonarray

iterables, 151–152
throwing errors in, 154–155

i variable, 7–9

J
job queues, 214
job scheduling, 220
join() method, 207
json2.js, 113
JSON global object, 113
JSON.stringify() method, 76

316 Index

K
keys() iterator, 145, 147–148, 207–208

L
lastIndexOf() method, 19–20,

196–197, 207
let declarations

const declarations versus, 5
in global scope, 11
in loops, 9–10
no redeclaration, 4
syntax for, 3–4
temporal dead zone, 6

lexical scopes (block scopes), 3
little-endian, 202
loading modules, 293–297

asynchronous module loading,
295–296

browser module specifier
resolution, 297

loading sequence, 294–295
<script> element, 293–294
as workers, 296

localName variable, 87–88
localType variable, 87
logical OR operator (||), 36
loops. See also names of specific loops

block bindings in, 7–11
const declarations in loops,

10–11
functions in loops, 8
let declarations in loops, 9–10

complexity and, 138

M
makeRequest() method, 37–38
Map constructor, 131
map() method, 207–208
maps, 119–122, 129–136

array conversion with mapping
functions, 194–195

in ECMAScript 5, 120–122
forEach() method for, 131–132
initializing, 131
methods for, 130
rejection handling, 226–227
weak, 132–136

initializing, 133
limitations of, 136

methods for, 133–134
private object data, 134–135
using, 132–133

match() method, 18, 109
Math.max() method, 47–48
Math object methods, 301–302
MAX_SAFE_INTEGER property, 300
memory leaks, 127
metaproperties, 51
methods. See also names of specific methods

for arrays, 196–198
copyWithin() method, 197–198
fill() method, 197
findIndex() method, 196–197
find() method, 196–197
typed versus regular, 207–211

formal definition, 80–81
for generators, 142, 175–176
for identifying substrings, 19–21
for maps, 130
math, 301–302
on Object global, 71–74

accessor properties, 74
Object.assign() method, 72–74
Object.is() method, 72

for weak maps, 133–134
MIN_SAFE_INTEGER property, 300
mixArgs() function, 38–39
mixin() function, 73, 183
mixins, 72
modules, 283–298

default values, 289–291
exporting, 289–290
importing, 290–291

exporting, 284–285
re-exporting bindings, 291–292
renaming exports and imports,

288–289
importing, 285–288

entire module, 286–287
multiple bindings, 286
quirk of imported bindings, 288
renaming imports, 288–289
single binding, 286
without bindings, 292

loading, 293–297
asynchronous module loading,

295–296
browser module specifier

resolution, 297
loading sequence, 294–295

Index 317

<script> element, 293–294
as workers, 296

syntax limitations, 287
module specifiers, 285, 297
multiline strings, 26–28

N
name property, 48–49, 55

choosing appropriate names, 48
concise method syntax, 70
special cases of, 49

nested array destructuring, 92
nested object destructuring, 88–89
new.target metaproperty, 51–52,

188–189, 265–266
next() method

for iterators, 138–140, 143
passing arguments to iterators,

152–154
return statements for generators,

155–156
simple task runners, 160
task running with data, 160–161
throwing errors in iterators,

154–155
NodeList iterators, 151
normalization forms, 16–17
normalize() method, 16–17
Number.isInteger() method, 300–301
Number.isSafeInteger() method, 300–301
numeric data types, for typed

arrays, 199

O
Object.assign() method, 72–75, 261–262
Object.create() method, 76, 116, 279
Object.defineProperties() method,

101–102
Object.defineProperty() method, 101,

106, 167, 243, 257–261, 275
object extensibility traps, 255–257

duplicate extensibility methods,
256–257

examples of, 255–256
Object.freeze() method, 248
Object.getOwnPropertyDescriptor()

method, 257–261
Object.getOwnPropertyNames() method,

75–76, 104, 261–262
Object.getOwnPropertySymbols() method,

104, 261–262

Object.getPrototypeOf() method, 76,
78–79, 252–254, 303–304

object literals
duplicate properties, 75
syntax extensions, 68–71

computed property names,
70–71

concise method syntax, 69–70
property initializer shorthand,

68–69
Object.isExtensible() method, 255–256
Object.is() method, 72, 122
Object.keys() method, 76, 104, 261–262
Object.preventExtensions() method, 248,

255–257
Object.prototype.toString() method,

114–115
objects, 67–81

categories of, 68
destructuring for, 84–89

assigning to different local
variable names, 87–88

default values, 86–87
destructuring assignment,

85–86
mixed with array destructuring,

93–94
nested object destructuring,

88–89
duplicate object literal

properties, 75
method definition, 80–81
methods on Object global, 71–74

accessor properties, 74
Object.assign() method, 72–74
Object.is() method, 72

object literal syntax extensions,
68–71

computed property names,
70–71

concise method syntax, 69–70
property initializer shorthand,

68–69
own property enumeration order,

75–76
prototypes, 76–80

accessing with super references,
77–80

changing, 76–77
Object.seal() method, 248
Object.setPrototypeOf() method, 76–77,

252, 254, 303–304

318 Index

of() method, 208–209
onclick event, 214–215
ordinary objects, 68
outputInfo() function, 86
ownKeys trap, 245, 261–262
own properties

creating, 167
enumeration order, 75–76

P
parameters

default values, 36–43
default parameter expressions,

40–41
destructured parameters, 96–97
in ECMAScript 5, 36
in ECMAScript 6, 37–38
effect on arguments object, 38–39
object destructuring, 86–87
temporal dead zone, 41–43

destructured, 94–97
default values, 96–97
required, 95–96

unnamed, 43–46
in ECMAScript 5, 43–44
rest parameters, 44–46

validating, 264–265
pick() method, 44
pop() method, 210
p parameter, 64
preventExtensions trap, 245, 255–257
Promise constructor, 219
Promise.reject() method, 222–223
Promise.resolve() method, 222–223,

239–240
promises, 217–241

asynchronous task running,
237–240

chaining, 228–233
catching errors, 229–230
returning promises in promise

chains, 231–233
returning values in promise

chains, 230–231
global rejection handling, 224–228

browser rejection handling,
227–228

Node.js rejection handling,
225–227

inheriting from, 236–237

life cycle of, 217–219
responding to multiple, 233–236

Promise.all() method, 234–235
Promise.race() method, 235–236

settled, 221–224
executor errors, 224

unsettled, 219–221
property descriptor traps, 257–261

blocking Object.defineProperty(),
258–259

defineProperty() methods, 260–261
descriptor object restrictions,

259–260
duplicate descriptor methods, 260
getOwnPropertyDescriptor()

methods, 261
property initializer shorthand syntax,

68–69
__proto__ property, 303–304
prototype property, 54
[[Prototype]] property, 77
prototypes, 76–80

accessing with super references,
77–80

changing, 76–77
prototype proxy traps, 252–255

function of, 252–253
purpose of two sets of methods,

254–255
using proxies as, 275–282

on classes, 279–282
using get trap on prototypes,

276–277
using has trap on prototypes,

278–279
using set trap on prototypes,

277–278
proxies, 243–282

creating, 244, 245–246
function proxies, 262–268

callable class constructors,
267–268

calling constructors without
new, 265–266

overriding abstract base class
constructors, 266–267

validating function parameters,
264–265

hiding property existence,
249–250

Index 319

mimicking array behavior, 244,
269–275

deleting elements when
reducing length, 272–273

detecting array indexes, 270
implementing the MyArray class,

273–275
increasing length when adding

new elements, 270–271
object extensibility traps, 255–257

duplicate extensibility methods,
256–257

examples of, 255–256
object shape validation, 247–249
ownKeys trap, 261–262
preventing property deletion,

250–252
property descriptor traps, 257–261

blocking Object.defineProperty(),
258–259

defineProperty() methods,
260–261

descriptor object restrictions,
259–260

duplicate descriptor
methods, 260

getOwnPropertyDescriptor()
methods, 261

prototype proxy traps, 252–255
function of, 252–253
purpose of two sets of methods,

254–255
revocable proxies, 268–269
using as prototypes, 275–282

on classes, 279–282
using get trap on prototypes,

276–277
using has trap on prototypes,

278–279
using set trap on prototypes,

277–278
validating properties, 246–247

Proxy.revocable() method, 268–269
push() method, 210

R
readFile() function, 215–217,

219–220, 240
reduce() method, 207
reduceRight() method, 207

Reflect.apply() method, 263
Reflect.construct() method, 263,

265–267
Reflect.defineProperty() method, 257,

259–261
Reflect.deleteProperty() method, 251
reflect() function, 56
Reflect.get() method, 248, 273
Reflect.getOwnPropertyDescriptor()

method, 257, 260–261
Reflect.getPrototypeOf() method,

252, 254
Reflect.has() method, 249–250
reflection API, 244. See also proxies
Reflect.isExtensible() method, 255–256
Reflect object, 244
Reflect.ownKeys() method, 75–76
Reflect.preventExtensions() method,

255–257
Reflect.set() method, 246–247, 271, 278
Reflect.setPrototypeOf() method,

252, 254
RegExp variable, 11, 19, 23–24
regular expressions

duplicating, 23–24
flags property, 24–25
importance of, 13
u flag, 18–19
y flag, 21–23

rejectionhandled event, 227–228
rejectionHandled event, 225–226
reject() method, 219–220, 231
repeat() method, 20–21
replace() method, 109
resolve() method, 219–221, 230
rest items (...), 92–93
rest parameters (...), 44–46
return statements, for generators,

155–156
reverse() method, 207
revoke() function, 269
run() function, 160, 239–240

S
<script> element, 293–294
scripts, 284
search() method, 109
Set constructor, 122–123
setCookie() function, 95–96
setFloat32() method, 202

320 Index

setFloat64() method, 202
setInt8() method, 202–203
setInterval() function, 220, 226
set keyword, 173
set() method, 132, 211
setPrototypeOf trap, 245, 252–254
sets, 119–129, 136

adding items, 122–123
converting to arrays, 126
creating, 122
in ECMAScript 5, 120–122
forEach() method for, 124–126
removing items, 123–124
weak, 127–129

creating, 127–128
regular versus, 128–129

setTimeout() function, 220–221
settled promises, 217, 221–224

executor errors, 224
set trap, 245

using on prototypes, 277–278
validating properties using,

246–247
setUint8() method, 202
shift() method, 210
single-threaded event loops, 214
slice() method, 185, 194, 200, 207
some() method, 207
sort() method, 207
splice() method, 210
split() method, 109
spread operator (...), 47–48

converting sets to arrays, 126
nonarray iterables and, 151–152

square brackets ([]), 70–71
standard objects, 68
startsWith() method, 19–20
static keyword, 177
static members, 176–177, 181
step() method, 160, 239–240
sticky regular expressions, 21–23
strict mode, changes to, 308–309
String.fromCodePoint() method, 16
String() function, 103–104
string iterators, 149–150
String.raw() tag, 31–32
strings, 13–33

importance of, 13
methods for identifying substrings,

19–21

repeat() method, 20–21
template literals, 25–32

making substitutions, 28–29
multiline strings, 26–28
syntax for, 26
tagged templates, 29–32

Unicode support, 13–19
codePointAt() method, 15–16
normalize() method, 16–17
String.fromCodePoint() method, 16
UTF-16 code points, 14–15, 18

subarray() method, 211
substitutions, 28–29
substrings, methods for identifying,

19–21
success() method, 236–237
sum() function, 56, 61, 264
super() method, 77–80, 179, 180,

183, 189
supplementary planes, 14
surrogate pairs, 14
Symbol.for() method, 102–103
Symbol function, 100
Symbol.hasInstance() method, 105–107
Symbol.isConcatSpreadable property, 105,

107–108
Symbol.iterator() method, 105,

142–145, 176
Symbol.keyFor() method, 103
Symbol.match property, 105, 109–110
Symbol.replace property, 105, 109–110
symbols, 99–117

coercion of, 103
creating, 100
exposing internal operations with,

105–116
identifying, 101
retrieving properties of, 104–105
sharing, 102–103
using, 101–102

Symbol.search property, 105, 109–110
Symbol.species property, 105, 185–188
Symbol.split property, 105, 109–110
Symbol.toPrimitive() method, 105, 111–112
Symbol.toStringTag property, 105, 112–115

defining object string tags, 114–115
identification problem

work around, 113
Symbol.unscopables property, 105,

115–116

Index 321

T
tagged templates, 29–32

defining tags, 30–31
using raw values in template

literals, 31–32
tail call optimization, 61–64

in ECMAScript 6, 62–63
making use of, 63–64

targets, 244–246
TDZ (temporal dead zone), 6–7, 41–43
template literals, 25–32

multiline strings, 26–28
substitutions, 28–29
syntax for, 26
tagged templates, 29–32

defining tags, 30–31
raw values, 31–32

temporal dead zone (TDZ), 6–7, 41–43
test() method, 23
then() method, 217–219, 221–223, 225,

228–229
this binding, 54, 58–60
throw() method, 154–155
toString() method, 100, 111, 113–114
traps, 244–245

function proxies with, 262–268
callable class constructors,

267–268
calling constructors without

new, 265–266
overriding abstract base class

constructors, 266–267
validating function parameters,

264–265
hiding property existence using,

249–250
object extensibility, 255–257

duplicate extensibility methods,
256–257

examples of, 255–256
object shape validation using,

247–249
ownKeys, 261–262
preventing property deletion with,

250–252
property descriptor, 257–261

blocking Object.defineProperty(),
258–259

defineProperty() methods,
260–261

descriptor object restrictions,
259–260

duplicate descriptor
methods, 260

getOwnPropertyDescriptor()
methods, 261

prototype proxy, 252–255
function of, 252–253
purpose of two sets of methods,

254–255
validating properties using, 246–247

trim() method, 28
type coercion, 103–104
typed arrays, 198–206

array buffers, 199–206
creating, 199–200
manipulating with views,

200–206
element size, 206
numeric data types, 199
regular arrays versus, 207

behavioral differences between,
209–210

iterators, 208
methods in common, 207–208
methods missing from typed

arrays, 210–211
methods present in typed

arrays, 211
of() and from() methods,

208–209
typeof operator, 6–7, 36, 101

U
u flag, 18–19
Uint8Array constructor, 204
Uint8ClampedArray constructor, 204
Uint16Array constructor, 204
Uint32Array constructor, 204
unhandledrejection event, 227–228
unhandledRejection event, 225–226
Unicode support, 13–19

codePointAt() method, 15–16
identifiers, 302–303
normalize() method, 16–17
String.fromCodePoint() method, 16
u flag, 18–19
UTF-16 code points, 14–15, 18

unnamed parameters, 43–46
in ECMAScript 5, 43–44
rest parameters, 44–46

322 Index

unsettled promises, 217, 219–221
unshift() method, 210
UTF-16 code points, 14–15, 18

V
valueOf() method, 111
values() iterator, 145–148, 176, 207–208
value variable, 2–4, 6
var declarations, 2–3

in global scope, 11–12
in loops, 7–8

views, manipulating array buffers with,
200–206

W
WeakMap constructor, 133
weak maps, 132–136

initializing, 133
limitations of, 136
methods for, 133–134
private object data, 134–135
using, 132–133

weak references, 127
WeakSet constructor, 127–128
weak sets, 127–129

creating, 127–128
regular sets versus, 128–129

WebGL, 198–199
well-known symbols, 105
window object, 11
with statements, 115–116
workers, 296
writeFile() function, 216

Y
y flag, 21–23
yield keyword, 139–141, 157, 159

Index 323

Updates
Visit https://www.nostarch.com/ecmascript6/ for updates, errata, and other
information.

eloqUent Javascript,
2nd edition
a Modern introduction to programming
by marijn haverbeke

december 2014, 472 pp., $39.95
isbn 978-1-59327-584-6

data visUalization
with Javascript
by stephen a. thomas

march 2015, 384 pp., $39.95
isbn 978-1-59327-605-8
full color

if heMingway wrote
Javascript
by angus croll

october 2014, 192 pp., $19.95
isbn 978-1-59327-585-3

python crash coUrse
a hands-on, project-Based introduction
to programming
by eric matthes

november 2015, 560 pp., $39.95
isbn 978-1-59327-603-4

the principles of
oBJect-oriented
Javascript
by nicholas c. zakas

february 2014, 120 pp., $24.95
isbn 978-1-59327-540-2

wicked cool shell scripts,
2nd edition
101 scripts for linux, os X, and
UniX systems
by dave taylor and brandon perry

fall 2016, 368 pp., $29.95
isbn 978-1-59327-602-7

More no-nonsense books from no starch press

phone:
800.420.7240 or

415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

SHELVE IN:
PROGRAM

M
ING LANGUAGES/

JAVASCRIPT

$34.95 ($40.95 CDN)

J A V A S C R I P T
Y O U R

L E V E L U P

J A V A S C R I P T
Y O U R

L E V E L U P

ECMAScript 6 represents the biggest update to the
core of JavaScript in the history of the language.
In Understanding ECMAScript 6, expert developer
Nicholas C. Zakas provides a complete guide to the
object types, syntax, and other exciting changes
that ECMAScript 6 brings to JavaScript. Every chap-
ter is packed with example code that works in any
JavaScript environment so you’ll be able to see new
features in action. You’ll learn:

• How ECMAScript 6 class syntax relates to more
familiar JavaScript concepts

• What makes iterators and generators useful

• How arrow functions differ from regular functions

• Ways to store data with sets, maps, and more

• The power of inheritance

• How to improve asynchronous programming with
promises

• How modules change the way you organize code

Whether you’re a web developer or a Node.js
developer, you’ll find Understanding ECMAScript 6
indispensable on your journey from ECMAScript 5
to ECMAScript 6.

A B O U T T H E A U T H O R

Nicholas C. Zakas has been working on web appli-
cations since 2000, focusing on frontend develop-
ment, and is known for writing and speaking about
frontend best practices. He honed his experience
during his five years at Yahoo!, where he was principal
frontend engineer for the Yahoo! home page. He is
the author of several books, including The Principles
of Object-Oriented JavaScript (No Starch Press) and
Professional JavaScript for Web Developers (Wrox).

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™

“ I L I E F LAT .”

Th is book uses a durab le b ind ing that won’t snap shut.

U
N

D
E

R
S

T
A

N
D

IN
G

 E
C

M
A

S
C

R
IP

T
 6

U
N

D
E

R
S

T
A

N
D

IN
G

 E
C

M
A

S
C

R
IP

T
 6

Z
A

K
A

S

	Foreword
	Acknowledgments
	Introduction
	The Road to ECMAScript 6
	About This Book
	Browser and Node.js Compatibility
	Who This Book Is For
	Overview
	Conventions Used
	Help and Support

	Chapter 1: Block Bindings
	var Declarations and Hoisting
	Block-Level Declarations
	let Declarations
	No Redeclaration
	const Declarations
	The Temporal Dead Zone

	Block Bindings in Loops
	Functions in Loops
	let Declarations in Loops
	const Declarations in Loops

	Global Block Bindings
	Emerging Best Practices for Block Bindings
	Summary

	Chapter 2: Strings and Regular Expressions
	Better Unicode Support
	UTF-16 Code Points
	The codePointAt() Method
	The String.fromCodePoint() Method
	The normalize() Method
	The Regular Expression u Flag

	Other String Changes
	Methods for Identifying Substrings
	The repeat() Method

	Other Regular Expression Changes
	The Regular Expression y Flag
	Duplicating Regular Expressions
	The flags Property

	Template Literals
	Basic Syntax
	Multiline Strings
	Making Substitutions
	Tagged Templates

	Summary

	Chapter 3: Functions
	Functions with Default Parameter Values
	Simulating Default Parameter Values in ECMAScript 5
	Default Parameter Values in ECMAScript 6
	How Default Parameter Values Affect the arguments Object
	Default Parameter Expressions
	Default Parameter TDZ

	Working with Unnamed Parameters
	Unnamed Parameters in ECMAScript 5
	Rest Parameters

	Increased Capabilities of the Function Constructor
	The Spread Operator
	The name Property
	Choosing Appropriate Names
	Special Cases of the name Property

	Clarifying the Dual Purpose of Functions
	Determining How a Function Was Called in ECMAScript 5
	The new.target Metaproperty

	Block-Level Functions
	Deciding When to Use Block-Level Functions
	Block-Level Functions in Non-Strict Mode

	Arrow Functions
	Arrow Function Syntax
	Creating Immediately Invoked Function Expressions
	No this Binding
	Arrow Functions and Arrays
	No arguments Binding
	Identifying Arrow Functions

	Tail Call Optimization
	How Tail Calls Are Different in ECMAScript 6
	How to Harness Tail Call Optimization

	Summary

	Chapter 4: Expanded Object Functionality
	Object Categories
	Object Literal Syntax Extensions
	Property Initializer Shorthand
	Concise Methods
	Computed Property Names

	New Methods
	The Object.is() Method
	The Object.assign() Method

	Duplicate Object Literal Properties
	Own Property Enumeration Order
	Enhancements for Prototypes
	Changing an Object’s Prototype
	Easy Prototype Access with Super References

	A Formal Method Definition
	Summary

	Chapter 5: Destructuring for Easier Data Access
	Why Is Destructuring Useful?
	Object Destructuring
	Destructuring Assignment
	Default Values
	Assigning to Different Local Variable Names
	Nested Object Destructuring

	Array Destructuring
	Destructuring Assignment
	Default Values
	Nested Destructuring
	Rest Items

	Mixed Destructuring
	Destructured Parameters
	Destructured Parameters Are Required
	Default Values for Destructured Parameters

	Summary

	Chapter 6: Symbols and Symbol Properties
	Creating Symbols
	Using Symbols
	Sharing Symbols
	Symbol Coercion
	Retrieving Symbol Properties
	Exposing Internal Operations with Well-Known Symbols
	The Symbol.hasInstance Method
	The Symbol.isConcatSpreadable Property
	The Symbol.match, Symbol.replace, Symbol.search, and Symbol.split Properties
	The Symbol.toPrimitive Method
	The Symbol.toStringTag Property
	The Symbol.unscopables Property

	Summary

	Chapter 7: Sets and Maps
	Sets and Maps in ECMAScript 5
	Problems with Workarounds
	Sets in ECMAScript 6
	Creating Sets and Adding Items
	Removing Items
	The forEach() Method for Sets
	Converting a Set to an Array
	Weak Sets

	Maps in ECMAScript 6
	Map Methods
	Map Initialization
	The forEach() Method for Maps
	Weak Maps

	Summary

	Chapter 8: Iterators and Generators
	The Loop Problem
	What Are Iterators?
	What Are Generators?
	Generator Function Expressions
	Generator Object Methods

	Iterables and for-of Loops
	Accessing the Default Iterator
	Creating Iterables

	Built-In Iterators
	Collection Iterators
	String Iterators
	NodeList Iterators

	The Spread Operator and Nonarray Iterables
	Advanced Iterator Functionality
	Passing Arguments to Iterators
	Throwing Errors in Iterators
	Generator Return Statements
	Delegating Generators

	Asynchronous Task Running
	A Simple Task Runner
	Task Running with Data
	An Asynchronous Task Runner

	Summary

	Chapter 9: Introducing JavaScript Classes
	Class-Like Structures in ECMAScript 5
	Class Declarations
	A Basic Class Declaration
	Why Use the Class Syntax?

	Class Expressions
	A Basic Class Expression
	Named Class Expressions

	Classes as First-Class Citizens
	Accessor Properties
	Computed Member Names
	Generator Methods
	Static Members
	Inheritance with Derived Classes
	Shadowing Class Methods
	Inherited Static Members
	Derived Classes from Expressions
	Inheriting from Built-Ins
	The Symbol.species Property

	Using new.target in Class Constructors
	Summary

	Chapter 10: Improved Array Capabilities
	Creating Arrays
	The Array.of() Method
	The Array.from() Method

	New Methods on All Arrays
	The find() and findIndex() Methods
	The fill() Method
	The copyWithin() Method

	Typed Arrays
	Numeric Data Types
	Array Buffers
	Manipulating Array Buffers with Views

	Similarities Between Typed and Regular Arrays
	Common Methods
	The Same Iterators
	The of() and from() Methods

	Differences Between Typed and Regular Arrays
	Behavioral Differences
	Missing Methods
	Additional Methods

	Summary

	Chapter 11: Promises and Asynchronous Programming
	Asynchronous Programming Background
	The Event Model
	The Callback Pattern

	Promise Basics
	The Promise Life Cycle
	Creating Unsettled Promises
	Creating Settled Promises
	Executor Errors

	Global Promise Rejection Handling
	Node.js Rejection Handling
	Browser Rejection Handling

	Chaining Promises
	Catching Errors
	Returning Values in Promise Chains
	Returning Promises in Promise Chains

	Responding to Multiple Promises
	The Promise.all() Method
	The Promise.race() Method

	Inheriting from Promises
	Asynchronous Task Running
	Summary

	Chapter 12: Proxies and the Reflection API
	The Array Problem
	Introducing Proxies and Reflection
	Creating a Simple Proxy
	Validating Properties Using the set Trap
	Object Shape Validation Using the get Trap
	Hiding Property Existence Using the has Trap
	Preventing Property Deletion with the deleteProperty Trap
	Prototype Proxy Traps
	How Prototype Proxy Traps Work
	Why Two Sets of Methods?

	Object Extensibility Traps
	Two Basic Examples
	Duplicate Extensibility Methods

	Property Descriptor Traps
	Blocking Object.defineProperty()
	Descriptor Object Restrictions
	Duplicate Descriptor Methods

	The ownKeys Trap
	Function Proxies with the apply and construct Traps
	Validating Function Parameters
	Calling Constructors Without new
	Overriding Abstract Base Class Constructors
	Callable Class Constructors

	Revocable Proxies
	Solving the Array Problem
	Detecting Array Indexes
	Increasing length when Adding New Elements
	Deleting Elements When Reducing length
	Implementing the MyArray Class

	Using a Proxy as a Prototype
	Using the get Trap on a Prototype
	Using the set Trap on a Prototype
	Using the has Trap on a Prototype
	Proxies as Prototypes on Classes

	Summary

	Chapter 13: Encapsulating Code with Modules
	What Are Modules?
	Basic Exporting
	Basic Importing
	Importing a Single Binding
	Importing Multiple Bindings
	Importing an Entire Module
	A Subtle Quirk of Imported Bindings

	Renaming Exports and Imports
	Default Values in Modules
	Exporting Default Values
	Importing Default Values

	Re-exporting a Binding
	Importing Without Bindings
	Loading Modules
	Using Modules in Web Browsers
	Browser Module Specifier Resolution

	Summary

	Appendix A: Minor Changes in ECMAScript 6
	Working with Integers
	Identifying Integers
	Safe Integers

	New Math Methods
	Unicode Identifiers
	Formalizing the __proto__ Property

	Appendix B: Understanding ECMAScript 7 (2016)
	The Exponentiation Operator
	Order of Operations
	Operand Restriction

	The Array.prototype.includes() Method
	How to Use Array.prototype.includes()
	Value Comparison

	A Change to Function-Scoped Strict Mode

	Index

